
1

Tutorial on the Semantic Web

Ivan Herman, W3C

(Last update: 4 May 2009)

2

WARNING TO THE READER!
• This is an evolving slide set. This means:

• it changes frequently
• there may be bugs, inconsistencies
• it may try to reflect the latest view of technology evolution

but that is often a moving target (eg, in the areas of OWL,
RIF, ...)

• “Frozen” versions are instantiated for a specific
presentation, and those become stable

3

Introduction

4

Towards a Semantic Web
• The current Web represents information using

• natural language (English, Hungarian, Chinese,…)
• graphics, multimedia, page layout

• Humans can process this easily
• can deduce facts from partial information
• can create mental associations
• are used to various sensory information

• (well, sort of… people with disabilities may have serious
problems on the Web with rich media!)

5

Towards a Semantic Web
• Tasks often require to combine data on the Web:

• hotel and travel information may come from different sites
• searches in different digital libraries
• etc.

• Again, humans combine these information easily
• even if different terminologies are used!

6

However…
• However: machines are ignorant!

• partial information is unusable
• difficult to make sense from, e.g., an image
• drawing analogies automatically is difficult
• difficult to combine information automatically

• is <foo:creator> same as <bar:author>?
• …

7

Example: automatic airline reservation
• Your automatic airline reservation

• knows about your preferences
• builds up knowledge base using your past
• can combine the local knowledge with remote services:

• airline preferences
• dietary requirements
• calendaring
• etc

• It communicates with remote information
• (M. Dertouzos: The Unfinished Revolution)

8

Example: data(base) integration
• Databases are very different in structure, in content
• Lots of applications require managing several

databases
• after company mergers
• combination of administrative data for e-Government
• biochemical, genetic, pharmaceutical research
• etc.

• Most of these data are accessible from the Web
(though not necessarily public yet)

9

And the problem is real…

10

Example: social networks
• Social sites are everywhere these days (LinkedIn,

Facebook, Dopplr, Digg, Plexo, Zyb, …)
• How many times did you have to add your

contacts?
• Applications should be able to get to those data via

standard means
• there are, of course, privacy issues…

11

Example: digital libraries
• It means catalogues on the Web

• librarians have known how to do that for centuries
• goal is to have this on the Web, World-wide
• extend it to multimedia data, too

• But it is more: software agents should also be
librarians!
• help you in finding the right publications

12

Example: semantics of Web Services
• Web services technology is great
• But if services are ubiquitous, searching issue

comes up, for example:
• “find me the best differential equation solver”
• “check if it can be combined with the XYZ plotter service”

• It is necessary to characterize the service
• not only in terms of input and output parameters…
• …but also in terms of its semantics

13

What is needed?
• (Some) data should be available for machines for

further processing
• Data should be possibly combined, merged on a

Web scale
• Sometimes, data may describe other data…
• … but sometimes the data is to be exchanged by

itself, like my calendar or my travel preferences
• Machines may also need to reason about that data

14

In short: we need a Web of Data!

15

In what follows…
• We will use a simplistic example to introduce the

main Semantic Web concepts
• We take, as an example area, data integration

16

The rough structure of data integration
1.Map the various data onto an abstract data

representation
• make the data independent of its internal representation…

2.Merge the resulting representations
3.Start making queries on the whole!

• queries not possible on the individual data sets

17

A simplified bookstore data (dataset “A”)
ID Author Title Publisher Year
ISBN0-00-651409-X The Glass Palace 2000id_xyz id_qpr

ID Name Home Page

ID City
Harper Collins London

id_xyz Ghosh, Amitav http://www.amitavghosh.com

Publ. Name
id_qpr

18

1st: export your data as a set of relations

19

Some notes on the exporting the data
• Relations form a graph

• the nodes refer to the “real” data or contain some literal
• how the graph is represented in machine is immaterial for

now
• Data export does not necessarily mean physical

conversion of the data
• relations can be generated on-the-fly at query time

• via SQL “bridges”
• scraping HTML pages
• extracting data from Excel sheets
• etc.

• One can export part of the data

20

Another bookstore data (dataset “F”)
A B D E

1 ID Titre Original

2

ISBN0 2020386682 A13 ISBN-0-00-651409-X

3

6 ID Auteur
7 ISBN-0-00-651409-X A12

11

12

13

Traducteur
Le Palais
des
miroirs

Nom
Ghosh, Amitav
Besse, Christianne

21

2nd: export your second set of data

22

3rd: start merging your data

23

3rd: start merging your data (cont.)

24

3rd: merge identical resources

25

Start making queries…
• User of data “F” can now ask queries like:

• “give me the title of the original”
• well, … « donnes-moi le titre de l’original »

• This information is not in the dataset “F”…
• …but can be retrieved by merging with dataset “A”!

26

However, more can be achieved…
• We “feel” that a:author and f:auteur should be

the same
• But an automatic merge doest not know that!
• Let us add some extra information to the merged

data:
• a:author same as f:auteur
• both identify a “Person”
• a term that a community may have already defined:

• a “Person” is uniquely identified by his/her name and, say,
homepage

• it can be used as a “category” for certain type of resources

27

3rd revisited: use the extra knowledge

28

Start making richer queries!
• User of dataset “F” can now query:

• “donnes-moi la page d’accueil de l’auteur de l’originale”
• well… “give me the home page of the original’s ‘auteur’”

• The information is not in datasets “F” or “A”…
• …but was made available by:

• merging datasets “A” and datasets “F”
• adding three simple extra statements as an extra “glue”

29

Combine with different datasets
• Using, e.g., the “Person”, the dataset can be

combined with other sources
• For example, data in Wikipedia can be extracted

using dedicated tools
• e.g., the “dbpedia” project can extract the “infobox”

information from Wikipedia already…

http://dbpedia.org/

30

Merge with Wikipedia data

31

Merge with Wikipedia data

32

Merge with Wikipedia data

33

Is that surprising?
• It may look like it but, in fact, it should not be…
• What happened via automatic means is done every

day by Web users!
• The difference: a bit of extra rigour so that

machines could do this, too

34

What did we do?
• We combined different datasets that

• are somewhere on the web
• are of different formats (mysql, excel sheet, XHTML, etc)
• have different names for relations

• We could combine the data because some URI-s
were identical (the ISBN-s in this case)

• We could add some simple additional information
(the “glue”), also using common terminologies that
a community has produced

• As a result, new relations could be found and
retrieved

35

It could become even more powerful
• We could add extra knowledge to the merged

datasets
• e.g., a full classification of various types of library data
• geographical information
• etc.

• This is where ontologies, extra rules, etc, come in
• ontologies/rule sets can be relatively simple and small, or

huge, or anything in between…
• Even more powerful queries can be asked as a

result

36

What did we do? (cont)

37

The abstraction pays off because…
• … the graph representation is independent of the

exact structures
• … a change in local database schema’s, XHTML

structures, etc, do not affect the whole
• “schema independence”

• … new data, new connections can be added
seamlessly

38

The network effect
• Through URI-s we can link any data to any data
• The “network effect” is extended to the (Web) data
• “Mashup on steroids” become possible

39

So where is the Semantic Web?
• The Semantic Web provides technologies to make

such integration possible!
• Hopefully you get a full picture at the end of the

tutorial…

40

The Basis: RDF

41

RDF triples
• Let us begin to formalize what we did!

• we “connected” the data…
• but a simple connection is not enough… data should be

named somehow
• hence the RDF Triples: a labelled connection between two

resources

42

RDF triples (cont.)
• An RDF Triple (s,p,o) is such that:

• “s”, “p” are URI-s, ie, resources on the Web; “o” is a URI or
a literal

• “s”, “p”, and “o” stand for “subject”, “property”, and “object”
• here is the complete triple:

• RDF is a general model for such triples (with
machine readable formats like RDF/XML, Turtle,
N3, RXR, …)

(<http://…isbn…6682>, <http://…/original>, <http://…isbn…409X>)

43

RDF triples (cont.)
• RDF triples are also referred to as “triplets”, or

“statements”
• The “p” is also referred to as “predicate” sometimes

44

RDF triples (cont.)
• Resources can use any URI; it can denote an

element within an XML file on the Web, not only a
“full” resource, e.g.:

• http://www.example.org/file.xml#element(home)
• http://www.example.org/file.html#home
• http://www.example.org/file2.xml#xpath1(//q[@a=b])

• RDF triples form a directed, labelled graph (the
best way to think about them!)

45

A simple RDF example (in RDF/XML)

<rdf:Description rdf:about="http://…/isbn/2020386682">
 <f:titre xml:lang="fr">Le palais des mirroirs</f:titre>
 <f:original rdf:resource="http://…/isbn/000651409X"/>
</rdf:Description>

(Note: namespaces are used to simplify the URI-s)

46

A simple RDF example (in Turtle)

<http://…/isbn/2020386682>
 f:titre "Le palais des mirroirs"@fr ;
 f:original <http://…/isbn/000651409X> .

47

URI-s play a fundamental role
• URI-s made the merge possible
• URI-s ground RDF into the Web

• information can be retrieved using existing tools
• this makes the “Semantic Web”, well… “Semantic Web”

48

RDF/XML principles

«Element for http://…/isbn/2020386682»
 «Element for original»
 «Element for http://…/isbn/000651409X»
 «/Element for original»
«/Element for http://…/isbn/2020386682»
«Element for http://…/isbn/2020386682»
 «Element for titre»
 Le palais des mirroirs
 «/Element for titre»
«/Element for http://…/isbn/2020386682»

• Encode nodes and edges as XML elements or with
literals:

49

RDF/XML principles (cont.)

• Encode the resources (i.e., the nodes):
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description rdf:about="http://…/isbn/2020386682">
 «Element for original»
 <rdf:Description rdf:about="http://…/isbn/000651409X"/>
 «/Element for f:original»
 </rdf:Description>
<rdf:RDF>

50

RDF/XML principles (cont.)

• Encode the properties (i.e., edges) in their own
namespaces:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:f="http://www.editeur.fr"">
 <rdf:Description rdf:about="http://…/isbn/2020386682">
 <f:original>
 <rdf:Description rdf:about="http://…/isbn/000651409X"/>
 </f:original>
 </rdf:Description>
<rdf:RDF>

51

Examples of RDF/XML “simplifications”
• Object references can be put into attributes
• Several properties on the same resource

• There are other “simplification rules”, see the “RDF/
XML Serialization” document for details

<rdf:Description rdf:about="http://…/isbn/2020386682">
 <f:original rdf:resource="http://…/isbn/000651409X"/>
 <f:titre>
 Le palais des mirroirs
 </f:titre>
</rdf:Description>

52

“Internal” nodes
• Consider the following statement:

• “the publisher is a «thing» that has a name and an address”
• Until now, nodes were identified with a URI. But…
• …what is the URI of «thing»?

53

One solution: create an extra URI

• The resource will be “visible” on the Web
• care should be taken to define unique URI-s

• Serializations may give syntactic help to define
local URI-s

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <a:publisher rdf:resource="urn:uuid:f60ffb40-307d-…"/>
</rdf:Description>
<rdf:Description rdf:about="urn:uuid:f60ffb40-307d-…">
 <a:p_name>HarpersCollins</a:p_name>
 <a:city>HarpersCollins</a:city>
</rdf:Description>

54

Internal identifier (“blank nodes”)

• Syntax is serialization dependent
• A234 is invisible from outside (it is not a “real”

URI!); it is an internal identifier for a resource

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <a:publisher rdf:nodeID="A234"/>
</rdf:Description>
<rdf:Description rdf:nodeID="A234">
 <a:p_name>HarpersCollins</a:p_name>
 <a:city>HarpersCollins</a:city>
</rdf:Description>

<http://…/isbn/2020386682> a:publisher _:A234.
_:A234 a:p_name "HarpersCollins".

55

Blank nodes: the system can also do it
• Let the system create a “nodeID” internally (you do

not really care about the name…)
<rdf:Description rdf:about="http://…/isbn/000651409X">
 <a:publisher>
 <rdf:Description>
 <a:p_name>HarpersCollins</a:p_name>
 …
 </rdf:Description>
 </a:publisher>
</rdf:Description>

56

Same in Turtle

<http://…/isbn/000651409X> a:publisher [
 a:p_name "HarpersCollins";
 …
].

57

Blank nodes: some more remarks
• Blank nodes require attention when merging

• blanks nodes with identical nodeID-s in different graphs are
different

• implementations must be careful…
• Many applications prefer not to use blank nodes

and define new URI-s “on-the-fly”
• eg, when triples are in a database

• From a logic point of view, blank nodes represent
an “existential” statement
• “there is a resource such that…”

58

RDF in programming practice
• For example, using Java+Jena (HP’s Bristol Lab):

• a “Model” object is created
• the RDF file is parsed and results stored in the Model
• the Model offers methods to retrieve:

• triples
• (property,object) pairs for a specific subject
• (subject,property) pairs for specific object
• etc.

• the rest is conventional programming…
• Similar tools exist in Python, PHP, etc.

59

Jena example

 // create a model
 Model model=new ModelMem();
 Resource subject=model.createResource("URI_of_Subject")
 // 'in' refers to the input file
 model.read(new InputStreamReader(in));
 StmtIterator iter=model.listStatements(subject,null,null);
 while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty();
 o = st.getObject();
 do_something(p,o);
 }

60

Merge in practice
• Environments merge graphs automatically

• e.g., in Jena, the Model can load several files
• the load merges the new statements automatically

61

One level higher up
(RDFS, Datatypes)

62

Need for RDF schemas
• First step towards the “extra knowledge”:

• define the terms we can use
• what restrictions apply
• what extra relationships are there?

• Officially: “RDF Vocabulary Description Language”
• the term “Schema” is retained for historical reasons…

63

Classes, resources, …
• Think of well known traditional ontologies or

taxonomies:
• use the term “novel”
• “every novel is a fiction”
• “«The Glass Palace» is a novel”
• etc.

• RDFS defines resources and classes:
• everything in RDF is a “resource”
• “classes” are also resources, but…
• …they are also a collection of possible resources (i.e.,

“individuals”)
• “fiction”, “novel”, …

64

Classes, resources, … (cont.)
• Relationships are defined among

classes/resources:
• “typing”: an individual belongs to a specific class

• “«The Glass Palace» is a novel”
• to be more precise: “«http://.../000651409X» is a novel”

• “subclassing”: all instances of one are also the instances of
the other (“every novel is a fiction”)

• RDFS formalizes these notions in RDF

65

Classes, resources in RDF(S)

• RDFS defines the meaning of these terms
• (these are all special URI-s, we just use the namespace

abbreviation)

66

Schema example in RDF/XML
• The schema part:

<rdf:Description rdf:ID="Novel">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Description>

• The RDF data on a specific novel:

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <rdf:type rdf:resource="http://…/bookSchema.rdf#Novel"/>
</rdf:Description>

67

An aside: typed nodes in RDF/XML
• A frequent simplification rule: instead of
<rdf:Description rdf:about="http://...">
 <rdf:type rdf:resource="http://..../something#ClassName>
 ...
</rdf:Description>

use:
<yourNameSpace:ClassName rdf:about="http://...">
 ...
</yourNameSpace:ClassName>

ie:
<a:Novel rdf:about="http://…/isbn/000651409X">
 ...
</a:Novel>

68

Further remarks on types
• A resource may belong to several classes

• rdf:type is just a property…
• “«The Glass Palace» is a novel, but «The Glass Palace» is

also an «inventory item»…”
• i.e., it is not like a datatype!

• The type information may be very important for
applications
• e.g., it may be used for a categorization of possible nodes
• probably the most frequently used RDF property…

• (remember the “Person” in our example?)

69

Inferred properties

• is not in the original RDF data…
• …but can be inferred from the RDFS rules
• RDFS environments return that triple, too

 (<http://…/isbn/000651409X> rdf:type #Fiction)

70

Inference: let us be formal…
• The RDF Semantics document has a list of (33)

entailment rules:
• “if such and such triples are in the graph, add this and this”
• do that recursively until the graph does not change

• The relevant rule for our example:

If:
 uuu rdfs:subClassOf xxx .
 vvv rdf:type uuu .
Then add:
 vvv rdf:type xxx .

71

Properties
• Property is a special class (rdf:Property)

• properties are also resources identified by URI-s
• There is also a possibility for a “sub-property”

• all resources bound by the “sub” are also bound by the other
• Range and domain of properties can be specified

• i.e., what type of resources serve as object and subject

72

Properties (cont.)
• Properties are also resources (named via URI–s)…
• So properties of properties can be expressed as…

RDF properties
• this twists your mind a bit, but you can get used to it

• For example, (P rdfs:domain C) means:
• P is a property
• C is a class
• when using P, I can infer that the “subject” is of type C

73

Property specification example

74

Property specification serialized
• In RDF/XML:
<rdf:Property rdf:ID="title">
 <rdfs:domain rdf:resource="#Fiction"/>
 <rdfs:range rdf:resource="http://...#Literal"/>
</rdf:Property>

• In Turtle:
:title
 rdf:type rdf:Property;
 rdfs:domain :Fiction;
 rdfs:range rdfs:Literal.

75

What does this mean?
• Again, new relations can be deduced. Indeed, if
:title
 rdf:type rdf:Property;
 rdfs:domain :Fiction;
 rdfs:range rdfs:Literal.
<http://…/isbn/000651409X> :title "The Glass Palace" .

• then the system can infer that:

<http://…/isbn/000651409X> rdf:type :Fiction .

76

Literals
• Literals may have a data type

• floats, integers, booleans, etc, defined in XML Schemas
• full XML fragments

• (Natural) language can also be specified

77

Examples for datatypes

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <page_number rdf:datatype="http://...#integer>543</page_number>
 <publ_date rdf:datatype="http://...#gYear>2000</publ_date>
 <price rdf:datatype="http://...#float>6.99</price>
</rdf:Description>

<http://…/isbn/000651409X>
 :page_number "543"^^xsd:integer ;
 :publ_date "2000"^^xsd:gYear ;
 :price "6.99"^^xsd:float .

78

Examples for language tags

<rdf:Description rdf:about="http://…/isbn/000651409X">
 <title xml:lang="en">The Glass Palace</title>
 <fr:titre xml:lang="fr">Le palais des mirroirs</fr:titre>
</rdf:Description>

<http://…/isbn/000651409X>
 :title "The Glass Palace"@en ;
 fr:titre "Le palais des mirroirs"@fr .

79

XML literals in RDF/XML
• XML Literals

• makes it possible to “include” XML vocabularies into RDF:

<rdf:Description rdf:about="#Path">
 <axsvg:algorithmUsed rdf:parseType="Literal">
 <math xmlns="...">
 <apply>
 <laplacian/>
 <ci>f</ci>
 </apply>
 </math>
 </axsvg:algorithmUsed>
</rdf:Description/>

80

A bit of RDFS can take you far…
• Remember the power of merge?
• We could have used, in our example:

• f:auteur is a subproperty of a:author and vice versa
(although we will see other ways to do that…)

• Of course, in some cases, more complex
knowledge is necessary (see later…)

81

Some predefined structures…
(collections, containers)

82

Predefined classes and properties
• RDF(S) has some predefined classes and

properties
• These are not new “concepts” in the RDF Model,

just resources with an agreed semantics
• Examples:

• collections (a.k.a. lists)
• containers: sequence, bag, alternatives
• reification
• rdfs:comment, rdfs:seeAlso, rdf:value

83

Collections (lists)
• We could have the following statement:

• “The book inventory is a «thing» that consists of
<http://…/isbn/000651409X>,
<http://…/isbn/000XXXX>, …”

• But we also want to express the constituents in this
order

• Using blank nodes is not enough

84

Collections (lists) (cont.)
• Familiar structure for Lisp programmers…

85

The same in RDF/XML and Turtle

<rdf:Description rdf:about="#Inventory">
 <a:consistsOf rdf:parseType="Collection">
 <rdf:Description rdf:about="http://.../isbn/000651409X"/>
 <rdf:Description rdf:about="http://.../isbn/XXXX"/>
 <rdf:Description rdf:about="http://.../isbn/YYYY"/>
 </a:consistsOf>
</rdf:Description>

:Inventory a:consistsOf
(<http://.../isbn/000651409X> <http://.../isbn/XXXX> …) .

86

Sequences
• Use the predefined:

• RDF Schema class Seq
• RDF properties rdf:_1, rdf:_2, …

• The agreed semantics is of a sequential
containment

87

Sequences serialized
• In RDF/XML:
<rdf:Description rdf:about="#Inventory">
 <a:consistsOf>
 <rdf:Description>
 <rdf:type rdf:resource="http:...rdf-syntax-ns#Seq">
 <rdf:_1 rdf:resource="http://.../isbn/000651409X>
 ...
 </rdf:Description>
 </a:consistsOf>
</rdf:Description/>

• In Turtle:
:Inventory
 a:consistsOf [
 rdf:type <http:...rdf-syntax-ns#Seq>;
 rdf:_1 <http://.../isbn/000651409X>;
 ...
].

88

Sequences (simplified RDF/XML)

<rdf:Description rdf:about="#Inventory">
 <a:consistsOf>
 <rdf:Seq>
 <rdf:li rdf:resource="http://.../isbn/000651409X">
 ...
 </rdf:Seq>
 </a:consistsOf>
</rdf:Description/>

89

Other containers
• Also defined in RDFS

• rdf:Bag
• a general bag, no particular semantics attached

• rdf:Alt
• agreed semantics: only one of the constituents is “valid”

• Note: these containers are incompletely defined
semantically; it is better not to use them…
• use repeated predicates for bags
• use lists for sequences

90

How to get RDF Data?
(Microformats, GRDDL, RDFa)

91

Simple approach
• Write RDF/XML or Turtle “manually”
• In some cases that is necessary, but it really does

not scale…

92

RDF with XHTML
• Obviously, a huge source of information
• By adding some “meta” information, the same

source can be reused for, eg, data integration,
better mashups, etc
• typical example: your personal information, like address,

should be readable for humans and processable by
machines

• Two solutions have emerged:
• use microformats and convert the content into RDF
• add RDF statements directly into XHTML via RDFa

93

Microformats
• Not a Semantic Web specification, originally

• there is a separate microformat community
• Approach: re-use (X)HTML attributes and elements

to add “meta” information
• typically @abbr, @class, @title, …
• different agreements for different applications

94

Microformat example: hCalendar
• Goal: “markup” calendaring information on your

(X)HTML page
• use a community agreement using, eg, :

• @class for event name
• abbr element for dates
• @title for date values
• etc.

• Automatic procedures (ie, calendaring applications)
may then get to the right data

95

Microformat example: hCalendar

96

Behind the scenes…

97

Microformat extraction
• To use it on the Semantic Web, microformat data

should be converted to RDF
• A simple transformation (eg, in XSLT) can be

defined, yielding:

<http://www.w3.org/People/Connolly/#sxsw2008>
 a hcal:Vevent;
 hcal:organizer <http://www.w3.org/People/Connolly/#me>;
 hcal:summary "SXSW Interactive";
 hcal:dtstart "2008-03-07"^^xsd:date;
 hcal:dtend "2008-03-12"^^xsd:date;
 hcal:url <http://2008.sxsw.com/interactive/>;
 hcal:location "Austin, TX" .

98

So far so good, but…
• The XSLT transformation is hCalendar specific

• each microformat dialect needs its own
• How does a general processor find the right

transformation?
• Enter GRDDL

99

GRDDL: find the right transformation
• GRDDL defines

• a few extra attribute values to locate the right transformation
• a precise processing model on how the transformation(s)

should be applied to generate RDF
• Note: we describe GRDDL in terms of XHTML (and

microformats) but GRDDL can be used for any
XML data

100

GRDDL: find the right transformation

101

The GRDDL process: simple case

102

The GRDDL process: merging case

103

The GRDDL process: indirect case

104

Microformats & GRDDL: pros and cons
• Pros:

• simple to define/add new vocabularies
• there is a strong microformat community for this

• works with all current browsers, markup validators, etc
• fairly user friendly, easy to understand and use

• Cons:
• does not scale well for complex vocabularies

• remember: needs a transformation per vocabulary
• difficult to mix vocabularies within one page; what if the

usage of an attribute clashes among different vocabularies?
• some of the attributes are meant for other usage

• eg, the abbr element, the @title attribute, …

105

An alternative solution: XHTML+RDFa
• RDFa also uses (X)HTML attributes to add “meta”

information
• However

• it also uses proprietary attributes to avoid clashes with the
intended usage of the (X)HTML ones

• it includes a namespace+URI mechanism for
disambiguation

• it is one set of attributes for any vocabularies

106

XHTML+RDFa example

107

Same example behind the scenes…

108

Same example behind the scenes…

109

In a slightly more readable format…

<html xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:dc="http://purl.org/dc/terms/"

 ...
>
....
 <div about="http://www.ivan-herman.net/me" … >
 ...
 <p>I graduated as mathematician at the

 Eötvös Loránd University of
 Budapest
 , ...
 ...

110

In a slightly more readable format…

<html xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:dc="http://purl.org/dc/terms/"

 ...
>
....
 <div about="http://www.ivan-herman.net/me" … >
 ...
 <p>I graduated as mathematician at the

 Eötvös Loránd University of
 Budapest
 , ...
 ...

Triple

Triple

111

... yielding

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix dc: <http://purl.org/dc/terms/>.
<http://www.ivan-herman.net/me>
 foaf:schoolHomepage <http://www.elte.hu/>.
<http://www.elte.hu/>
 dc:title "Eötvös Loránd University of Budapest".

112

Microformats or RDFa?
• There has been many unnecessary controversies
• For simple, single usage applications microformats

are enough
• GRDDL bridges them to the rest of the Semantic Web

• For more complex documents RDFa is great
• It often boils down to matters of taste…

113

Bridge to relational databases
• Data on the Web are mostly stored in databases
• “Bridges” are being defined:

• a layer between RDF and the relational data
• RDB tables are “mapped” to RDF graphs, possibly on the fly
• different mapping approaches are being used

• a number RDB systems offer this facility already (eg,
Oracle, OpenLink, …)

• A survey on mapping techniques has been
published at W3C

• W3C may engage in a standardization work in this
area

114

Linking Open Data

115

Linking Open Data Project
• Goal: “expose” open datasets in RDF
• Set RDF links among the data items from different

datasets
• Set up query endpoints
• Altogether billions of triples, millions of links…

116

Example data source: DBpedia
• DBpedia is a community effort to

• extract structured (“infobox”) information from Wikipedia
• provide a query endpoint to the dataset
• interlink the DBpedia dataset with other datasets on the

Web

117

Extracting structured data from Wikipedia
@prefix dbpedia <http://dbpedia.org/resource/>.
@prefix dbterm <http://dbpedia.org/property/>.

dbpedia:Amsterdam
 dbterm:officialName “Amsterdam” ;
 dbterm:longd “4” ;
 dbterm:longm “53” ;
 dbterm:longs “32” ;
 ...
 dbterm:leaderTitle “Mayor” ;
 dbterm:leaderName dbpedia:Job_Cohen ;
 ...
 dbterm:areaTotalKm “219” ;
 ...
dbpedia:ABN_AMRO
 dbterm:location dbpedia:Amsterdam ;
 ...

118

Automatic links among open datasets
<http://dbpedia.org/resource/Amsterdam>
 owl:sameAs <http://rdf.freebase.com/ns/...> ;
 owl:sameAs <http://sws.geonames.org/2759793> ;
 ...

<http://sws.geonames.org/2759793>
 owl:sameAs <http://dbpedia.org/resource/Amsterdam>
 wgs84_pos:lat “52.3666667” ;
 wgs84_pos:long “4.8833333” ;
 geo:inCountry <http://www.geonames.org/countries/#NL> ;
 ...

Processors can switch automatically from one to the other…

119

The LOD “cloud”, March 2008

120

The LOD “cloud”, September 2008

121

The LOD “cloud”, March 2009

122

Application specific portions of the cloud
• Eg, “bio” related datasets

• done, partially, by the “Linking Open Drug Data” task force
of the HCLS IG at W3C

123

Another view of (RDF) data on the Web
(Sindice)

124

Query RDF Data
(SPARQL)

125

RDF data access
• How do I query the RDF data?

• e.g., how do I get to the DBpedia data?

126

Querying RDF graphs
• Remember the Jena idiom:
StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty(); o = st.getObject();
 do_something(p,o);

• In practice, more complex queries into the RDF
data are necessary
• something like: “give me the (a,b) pair of resources, for

which there is an x such that (x parent a) and (b brother x)
holds” (ie, return the uncles)

• these rules may become quite complex
• The goal of SPARQL (Query Language for RDF)

http://www.w3.org/TR/rdf-sparql-query/

127

Analyze the Jena example
StmtIterator iter=model.listStatements(subject,null,null);
while(iter.hasNext()) {
 st = iter.next();
 p = st.getProperty(); o = st.getObject();
 do_something(p,o);

• The (subject,?p,?o) is a pattern for what we
are looking for (with ?p and ?o as “unknowns”)

128

General: graph patterns
• The fundamental idea: use graph patterns

• the pattern contains unbound symbols
• by binding the symbols, subgraphs of the RDF graph are

selected
• if there is such a selection, the query returns bound

resources

129

Our Jena example in SPARQL
SELECT ?p ?o
WHERE {subject ?p ?o}

• The triples in WHERE define the graph pattern,
with ?p and ?o “unbound” symbols

• The query returns all p,o pairs

130

Simple SPARQL example
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}

131

Simple SPARQL example

• Returns:
[[<..49X>,33,£], [<..49X>,50,€], [<..6682>,60,€],
[<..6682>,78,$]]

SELECT ?isbn ?price ?currency # note: not ?x!
WHERE {?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.}

132

Pattern constraints
SELECT ?isbn ?price ?currency # note: not ?x!
WHERE { ?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.
 FILTER(?currency == € }

• Returns: [[<..409X>,50,€], [<..6682>,60,€]]

133

Optional pattern
SELECT ?isbn ?price ?currency ?wiki
WHERE { ?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.
 OPTIONAL ?wiki w:isbn ?isbn. }

• Returns: [[<..49X>,33,£,<…Palace>], … ,
[<..6682>,78,$,]]

134

Optional pattern

• Returns: [[<..49X>,33,£,<…Palace>], … ,
[<..6682>,78,$,]]

SELECT ?isbn ?price ?currency ?wiki
WHERE { ?isbn a:price ?x. ?x rdf:value ?price. ?x p:currency ?currency.
 OPTIONAL ?wiki w:isbn ?isbn. }

135

Other SPARQL features
• Limit the number of returned results; remove

duplicates, sort them, …
• Specify several data sources (via URI-s) within the

query (essentially, a merge!)
• Construct a graph combining a separate pattern

and the query results
• Use datatypes and/or language tags when

matching a pattern

136

SPARQL usage in practice
• SPARQL is usually used over the network

• separate documents define the protocol and the result
format

• SPARQL Protocol for RDF with HTTP and SOAP bindings
• SPARQL results in XML or JSON formats

• Big datasets usually offer “SPARQL endpoints”
using this protocol
• typical example: SPARQL endpoint to DBpedia

137

Remote query/reply example
GET /qps?&query=SELECT+:…+WHERE:+… HTTP/1.1
User-Agent: my-sparql-client/0.0
Host: my.example

HTTP/1.1 200 OK
Server: my-sparql-server/0.0
Content-Type: application/sparql-results+xml
<?xml version="1.0" encoding="UTF-8"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#>
 <head>
 <variable name="a"/>
 ...
 </head>
 <results>
 <result ordered="false" distinct="false">
 <binding name="a"><uri>http:…</uri></binding>
 ...
 </result>
 <result> ... </result>
 </results>
</sparql>

138

The power of CONSTRUCT: “chaining”
queries

CONSTRUCT {
 <http://dbpedia.org/resource/Amitav_Ghosh> ?p1 ?o1.
 ?s2 ?p2 <http://dbpedia.org/resource/Amitav_Ghosh>.
}
WHERE {
 <http://dbpedia.org/resource/Amitav_Ghosh> ?p1 ?o1.
 ?s2 ?p2 <http://dbpedia.org/resource/Amitav_Ghosh>.
}

SELECT *
FROM <http://dbpedia.org/sparql/?query=CONSTRUCT+%7B++…>
WHERE {
 ?author_of dbpedia:author res:Amitav_Ghosh.
 res:Amitav_Ghosh dbpedia:reference ?homepage;
 rdf:type ?type;
 foaf:name ?foaf_name.
 FILTER regex(str(?type),"foaf")
}

- SPARQL endpoint
- returns RDF/XML

- Data reused in
another query…

139

A word of warning on SPARQL…
• Some features are missing

• control and/or description on the entailment regimes of the
triple store (eg, RDFS …)

• modify the triple store
• querying collections or containers may be complicated
• no functions for sum, average, min, max, …
• ways of aggregating queries
• …

• Delayed for a next version…
• work on this update has started in February 2009

140

SPARQL as a unifying point

141

SPARQL-ing DBpedia

142

Ontologies
(OWL)

143

Ontologies
• RDFS is useful, but does not solve all possible

requirements
• Complex applications may want more possibilities:

• characterization of properties
• identification of objects with different URI-s
• disjointness or equivalence of classes
• construct classes, not only name them
• more complex classification schemes
• can a program reason about some terms? E.g.:

• “if «Person» resources «A» and «B» have the same
«foaf:email» property, then «A» and «B» are identical”

• etc.

144

Ontologies (cont.)
• The term ontologies is used in this respect:

• Ie, there is a need for Web Ontology Language(s)
• RDFS can be considered as a simple ontology language

• Languages should be a compromise between
• rich semantics for meaningful applications
• feasibility, implementability

“defines the concepts and relationships used to describe
and represent an area of knowledge”

145

Web Ontology Language = OWL
• OWL is an extra layer, a bit like RDF Schemas

• own namespace, own terms
• it relies on RDF Schemas

• It is a separate recommendation
• actually… there is a 2004 version of OWL (“OWL 1”)
• and there is an update (“OWL 2”) that should be finalized in

2009
• this presentation is based on OWL 2

• in what follows, “OWL 2” will mean this is an OWL 2 feature
• everything else is valid both for OWL and OWL 2

146

OWL is complex…
• OWL is a large set of additional terms
• We will not cover the whole thing here…

147

Term equivalences
• For classes:

• owl:equivalentClass: two classes have the same
individuals

• owl:disjointWith: no individuals in common
• For properties:

• owl:equivalentProperty
• remember the a:author vs. f:auteur?

• owl:propertyDisjointWith
• For individuals:

• owl:sameAs: two URIs refer to the same concept
(“individual”)

• owl:differentFrom: negation of owl:sameAs

148

Other example: connecting to French

149

Typical usage of owl:sameAs

• Linking our example of Amsterdam from one data
set (DBpedia) to the other (Geonames):

<http://dbpedia.org/resource/Amsterdam>
 owl.sameAs <http://sws.geonames.org/2759793>;

• This is the main mechanism of “Linking” in the
Linking Open Data project

150

Property characterization
• In OWL, one can characterize the behaviour of

properties (symmetric, transitive, functional, inverse
functional…)

• OWL also separates data and object properties
• “datatype property” means that its range are typed literals

151

Characterization example
• “foaf:email” may be defined as “inverse

functional”
• i.e., two different subjects cannot have identical objects

152

What this means is…
• If the following holds in our triples:
:email rdf:type owl:InverseFunctionalProperty.
<A> :email "mailto:a@b.c".
 :email "mailto:a@b.c".

• I.e., new relationships were discovered again
(beyond what RDFS could do)

<A> owl:sameAs .

then, processed through OWL, the following
holds, too:

153

Other property characterizations
• In OWL 2 properties may also be characterized as

reflexive or irreflexive
• There may be an inverse relationship among

properties, eg:

<somebook> ex:author <somebody>.
ex:author owl:inverseOf ex:authorOf.

<somebody> ex:authorOf <somebook>.

yields, in OWL:

154

Property chains (OWL 2)
• Properties, when applied one after the other, may

be subsumed by yet another one:
• “if a person «P» was born in city «A» and «A» is in country

«B» then «P» was born in country «B»”
• more formally:

ex:born_in_country owl:propertyChainAxiom
 (ex:born_in_city ex:city_in_country).

• More than two constituents can be used
• There are some restrictions to avoid “circular”

specifications

155

Keys (OWL 2)
• Inverse functional properties are important for

identification of individuals
• think of the email examples

• But… identification based on one property may not
be enough

156

Keys (OWL 2)

• Identification is based on the identical values of two
properties

• The rule applies to persons only

“if two persons have the same emails and the same
homepages then they are identical”

157

Previous rule in OWL 2

:Person rdf:type owl:Class;
 owl:hasKey (:email :homepage) .

158

What it means is…
If:

<A> rdf:type :Person ;
 :email "mailto:a@b.c";
 :homepage "http://www.ex.org".
 rdf:type :Person ;
 :email "mailto:a@b.c";
 :homepage "http://www.ex.org".

<A> owl:sameAs .

then, processed through OWL 2, the following
holds, too:

159

Classes in OWL
• In RDFS, you can subclass existing classes…

that’s all
• In OWL, you can construct classes from existing

ones:
• enumerate its content
• through intersection, union, complement
• etc

160

Classes in OWL (cont)
• OWL makes a stronger conceptual distinction

between classes and individuals
• there is a separate term for owl:Class, to make the

difference
• individuals are separated into a special class called
owl:Thing

• Eg, a precise classification would be:

ex:Person rdf:type owl:Class.
<uri-for-Amitav-Ghosh>
 rdf:type owl:Thing;
 rdf:type owl:Person .

161

OWL classes can be “enumerated”
• The OWL solution, where possible content is

explicitly listed:

162

Same serialized

• I.e., the class consists of exactly of those
individuals

<owl:Class rdf:ID="Currency">
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:ID="£"/>
 <owl:Thing rdf:ID="€"/>
 <owl:Thing rdf:ID="$"/>
 …
 </owl:oneOf>
</owl:Class>

:£ rdf:type owl:Thing.
:€ rdf:type owl:Thing.
:$ rdf:type owl:Thing.
:Currency
 rdf:type owl:Class;
 owl:oneOf (:€ :£ :$).

163

Union of classes
• Essentially, like a set-theoretical union:

164

Same serialized

• Other possibilities: complementOf,
intersectionOf, …

<owl:Class rdf:ID="Literature">
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Novel"/>
 <owl:Class rdf:about="#Short_Story"/>
 <owl:Class rdf:about="#Poetry"/>
 …
 </owl:unionOf>
</owl:Class>

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owlClass;
 owl:unionOf (:Novel :Short_Story :Poetry).

165

For example…
If:

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owlClass;
 owl:unionOf (:Novel :Short_Story :Poetry).
<myWork> rdf:type :Novel .

<myWork> rdf:type :Literature .

then the following holds, too:

166

It can be a bit more complicated…
If:

:Novel rdf:type owl:Class.
:Short_Story rdf:type owl:Class.
:Poetry rdf:type owl:Class.
:Literature rdf:type owlClass;
 owl:unionOf (:Novel :Short_Story :Poetry).
fr:Roman owl:equivalentClass :Novel .
<myWork> rdf:type fr:Roman .

<myWork> rdf:type :Literature .

then, through the combination of different terms,
the following still holds:

167

What we have so far…
• The OWL features listed so far are already fairly

powerful
• E.g., various databases can be linked via
owl:sameAs, functional or inverse functional
properties, etc.

• Many inferred relationship can be found using a
traditional rule engine

168

However… that may not be enough
• Very large vocabularies might require even more

complex features
• typical usage example: definition of all concepts in a health

care environment
• some major issues

• the way classes (i.e., “concepts”) are defined
• handling of datatypes

• OWL includes those extra features but… the
inference engines become (much) more complex

169

Property value restrictions
• Classes are created by restricting the property

values on a (super)class
• For example: how would I characterize a “listed

price”?
• it is a price (which may be a general term), but one that is

given in one of the “allowed” currencies (say, €, £, or $)
• more formally:

• the value of “p:currency”, when applied to a resource on
listed price, must take one of those values…

• …thereby defining the class of “listed price”

170

Restrictions formally
• Defines a class of type owl:Restriction with a

• reference to the property that is constrained
• definition of the constraint itself

• One can, e.g., subclass from this node when
defining a particular class

:Listed_Price rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:currency;
 owl:allValuesFrom :Currency.
].

171

Possible usage…
If:

<someCurrency> rdf:type :Currency .

then the following holds:

:Listed_Price rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:currency;
 owl:allValuesFrom :Currency.
].
:Price rdf:type :Listed_Price .
:Price p:currency <someCurrency> .

172

Other restrictions

• allValuesFrom could be replaced by:
• someValuesFrom

• e.g., I could have said: there should be a price given in at
least one of those currencies

• hasValue, when restricted to one specific value
• hasSelf (in OWL 2), for local reflexivity

173

Similar concept: cardinality restriction
• In a property restriction, the goal was to restrict the

possible values of a property
• In a cardinality restriction, the number of relations

with that property is restricted
• “a book being on offer” could be characterized as having at

least one price property (i.e., the price of the book has been
established)

174

Cardinality restriction

• could also be “owl:cardinality” or
“owl:maxCardinality”

:Book_on_sale rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:price;
 owl:minCardinality "1"^^xsd:integer.
].

175

Qualified Cardinality Restriction (OWL 2)
• Combining cardinality and the “all value” restriction

• “there should be exactly two listed price tags with currency
value”

:Listed_Price rdf:type owl:Class;
 rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:currency;
 owl:onClass :Currency;
 owl:qualifiedCardinality "2"^^xsd:integer.
].

176

Datatypes in OWL
• RDF Literals can have a datatypes, OWL adopts

those
• But more complex vocabularies require datatypes

“restrictions”; eg, numeric intervals
• “I am interested in a price range between €5 and €15”

• RDF allows any URI to be used as datatypes
• ie, one could use XML Schemas to define, eg, numeric

intervals
• but it is very complex, and reasoners would have to

understand a whole different syntax

177

Datatype facets (OWL 2)
• For each datatype, XML Schema defines possible

restriction “facets”: min and max for numeric types,
length for strings, etc

• OWL uses these facets to define datatype ranges
for its own use

178

Definition of a numeric interval in OWL 2

:AllowedPrice rdf:type rdfs:Datatype;
 owl:onDatatype xsd:float;
 owl:withRestriction (
 [xsd:minInclusive 5.0]
 [xsd:maxExclusive 15.0]
) .

• The possible facets depend on the datatype:
xsd:pattern, xsd:length, xsd:maxLength,
…

179

Typical usage of OWL 2 datatype restrictions

:Affordable_book rdf:type owl:Class;
 rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:price_value;
 owl:allValuesFrom [

rdf:type rdfs:Datatype;
 owl:onDatatype xsd:float;
 owl:withRestriction (
 [xsd:minInclusive 5.0]
 [xsd:maxExclusive 15.0]
)
]
].

ie: an affordable book has a price between 5.0 and
15.0

180

But: OWL is hard!
• The combination of class constructions with various

restrictions is extremely powerful
• What we have so far follows the same logic as

before
• extend the basic RDF and RDFS possibilities with new

features
• define their semantics, ie, what they “mean” in terms of

relationships
• expect to infer new relationships based on those

• However… a full inference procedure is hard
• not implementable with simple rule engines, for example

181

OWL “species”
• OWL species comes to the fore:

• restricting which terms can be used and under what
circumstances (restrictions)

• if one abides to those restrictions, then simpler inference
engines can be used

• They reflect compromises: expressibility vs.
implementability
• mathematically: what is the formal semantics is used to

define the terms?

182

OWL Full (“RDF based semantics”)
• No constraints on any of the constructs

• owl:Class is equivalent to rdfs:Class
• owl:Thing is equivalent to rdfs:Resource
• this means that:

• Class can also be an individual, a URI can denote a property
as well as a Class

• e.g., it is possible to talk about class of classes, etc.
• one can make statements on RDFS constructs (e.g., declare
rdf:type to be functional…)

• etc.
• Extension of RDFS in all respects
• But: an OWL Full ontology may be, eg,

inconsistent!

183

Example for a possible OWL Full problem

• Here is a syntactically valid but inconsistent
ontology:

:A rdf:type owl:Class;
 owl:equivalentClass [
 rdf:type owl:Restriction;
 owl:onProperty rdf:type;
 owl:allValuesFrom :B.
].
:B rdf:type owl:Class;
 owl:complementOf :A.
:C rdf:type :A .

if c is of type A then it must be in B, but then it is
in the complement of A, ie, it is not of type A…

184

OWL Full usage
• Nevertheless OWL Full can be very useful

• it gives a generic framework to express many things
• Some application just need to express and

interchange terms (with possible scruffiness)
• Applications may control what terms are used and

how
• in fact, they may define their own sub-language via, eg, a

vocabulary
• thereby ensuring a manageable inference procedure

185

OWL DL (“direct semantics”)
• A number of restrictions are defined

• classes, individuals, object and datatype properties, etc, are
fairly strictly separated

• RDFS and OWL terms are reserved
• no statements on RDFS and OWL resources

• the values of user’s object properties must be individuals
• i.e., properties are really used to create relationships between

individuals
• no characterization of datatype properties
• …

• But: well known inference algorithms exist!

186

Examples for restrictions
• The following is not “legal” OWL DL:

<q> rdf:type <A>. # A is a class, q is an individual
<r> rdf:type <q>. # q cannot be used for a class, too
<A> ex:something . # properties are for individuals only
<q> ex:something <s>. # same property cannot be used as
<p> ex:something “54”. # same property cannot be used as

187

Example for OWL 2 conceptual restrictions
• In OWL 2 DL is a bit more relaxed

• same symbol may be used both for a class and an instance
• but not all “natural” inferences can be drawn in OWL 2 DL;

ie, although the following is valid:

q rdf:type A. # A is a class, q is an individual
A owl:sameAs B. # A and B are equals as individuals

q rdf:type B.

when using OWL 2 DL, this does not yield

188

“DL” stands for “Description Logic”
• An area in knowledge representation

• a special type of “structured” First Order Logic (logic with
safety guards…)

• formalism based on “concepts” (i.e., classes), “roles” (i.e.,
properties), and “individuals”

• based on model theoretic semantics (like RDF, RDFS, and
OWL)

• There are several variants of Description Logic
• OWL DL are embodiments of specific Description Logics

• for connoisseurs: OWL 2 DL ≈ SROIQ (D)
• some major differences: usage of URI-s, reference to XML

Schema datatypes, …

189

“Description Logic” (cont.)
• Traditional DL has its own terminology:

• named objects or concepts definition of classes, ⇔
relationships among classes

• roles properties⇔
• (terminological) axioms subclass and subproperty ⇔

relationships
• facts or assertions statements on individuals ⇔

(owl:Thing-s)
• There is also a compact mathematical notation for

axioms, assertions, etc:
• Literature Novel Short_Story Poetry≣ ⊔ ⊔
• Listed_Price currency.Currencies⊑ ∀

• You may see these in papers, books…

190

OWL DL usage
• Abiding to the restrictions means that very large

ontologies can be developed that require precise
procedures
• eg, in the medical domain, biological research, energy

industry, financial services (eg, XBRL), etc
• the number of classes and properties described this way

can go up to the many thousands
• OWL DL has become a language of choice to

define and manage formal ontologies in general
• even if their usage is not necessarily on the Web

191

OWL 2 also defines “profiles”
• Further restrictions on how terms can be used and

what inferences can be expected
• The semantic approaches (“species”) are identical,

but restrictions may ensure even more manageable
implementations

192

OWL 2 profiles
• Classification and instance queries in polynomial

time: OWL-EL
• Implementable on top of conventional relational

database engines: OWL-QL
• Implementable on top of traditional rule engines:

OWL-RL

193

An example: OWL-RL
• Goal: to be implementable through rule engines
• Usage follows a similar approach to RDFS:

1) merge the ontology and the instance data into an RDF
graph

2) use the rule engine to add new triples (as long as it is
possible)

3) then, for example, use SPARQL to query the resulting
(expanded) graph

• This application model is very important for RDF
based applications

194

What can be done in OWL RL?
• Many features are available:

• identity of classes, instances, properties
• subproperties, subclasses, domains, ranges
• union and intersection of classes (though with some

restrictions)
• property characterizations (functional, symmetric, etc)
• property chains
• keys
• some property restrictions (but not all inferences are

possible)
• All examples so far could be inferred with OWL RL!

195

What cannot be done in OWL RL?
• There are restrictions on what can be a sub and

superclass. Eg, the following is not manageable:
B rdf:type owl:Class;
 owl:unionOf (P Q R).
A rdfs:subClassOf B .

• Some features are not available or are restricted:
• not all datatypes are available
• no (OWL 2) datatype restrictions
• no minimum or exact cardinality restrictions
• maximum cardinality only with 0 and 1

196

What cannot be done in OWL RL?

• Some “natural” conclusions cannot be drawn, eg:
A rdf:type owl:Class;
 owl:intersectionOf (U V S).

does not yield:
A rdfs:subClassOf U .

197

Another profile example: OWL QL
• Close to a subset of RL
• Cannot handle keys, functional, transitive, etc,

properties
• essentially, handles classification of terms, class and

property equivalence, etc
• Cannot handle owl:sameAs
• But… queries can be translated to SQL directly

• ie, there is no need to modify/extend the graph like in RL
• just have a conceptual mapping to a RDB, and off you go…

198

Alternative syntaxes for OWL 2
• OWL constructs in RDF can be fairly verbose
• There are alternative syntaxes to express

ontologies
• direct XML encoding of ontologies (OWL/XML)
• “functional” syntax
• “Manchester” syntax

• The official exchange syntax is RDF (RDF/XML)
• all other syntaxes are optional for tools

199

OWL 2 Functional syntax example

Declaration(NamedIndividual(my:£))
Declaration(NamedIndividual(my:€))
Declaration(NamedIndividual(my:$))
Declaration(Class(:Currency))
EquivalentClasses(:Currency OneOf(my:€ my:£ my:$))
SubClassOf(my:Listed_Price AllValuesFrom(p:currency my:Currency))

my:£ rdf:type owl:Thing.
my:€ rdf:type owl:Thing.
my:$ rdf:type owl:Thing.
my:Currency rdf:type owl:Class;
 owl:oneOf (my:€ my:£ my:$).
my:Listed_Price rdf:type owl:Class;
 rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:currency;
 owl:allValuesFrom my:Currency
].

is equal to:

200

Manchester syntax example

Individual: my:€
Individual: my:£
Individual: my:$
Class: my:Currency EquivalentTo {my:€ my:£ my:$}
Class: my:Listed_Price that p:currency only my:Currency

my:£ rdf:type owl:Thing.
my:€ rdf:type owl:Thing.
my:$ rdf:type owl:Thing.
my:Currency rdf:type owl:Class;
 owl:oneOf (my:€ my:£ my:$).
my:Listed_Price rdf:type owl:Class;
 rdfs:subClassOf [
 rdf:type owl:Restriction;
 owl:onProperty p:currency;
 owl:allValuesFrom my:Currency
].

is equal to:

201

Ontology development
• The hard work is to create the ontologies

• requires a good knowledge of the area to be described
• some communities have good expertise already (e.g.,

librarians)
• OWL is just a tool to formalize ontologies
• large scale ontologies are often developed in a community

process
• Ontologies should be shared and reused

• can be via the simple namespace mechanisms…
• …or via explicit imports

• Applications can also be developed with very small
ontologies, though

202

Ontologies examples
• eClassOwl: eBusiness ontology for products and

services, 75,000 classes and 5,500 properties
• National Cancer Institute’s ontology: about 58,000

classes
• Open Biomedical Ontologies Foundry: a collection

of ontologies, including the Gene Ontology to
describe gene and gene product attributes in any
organism or protein sequence and annotation
terminology and data (UniProt)

• BioPAX: for biological pathway data

203

Using thesauri, glossaries
(SKOS)

204SKOS
(Simple Knowledge Organization System)

• Represent and share classifications, glossaries,
thesauri, etc
• for example:

• Dewey Decimal Classification, Art and Architecture
Thesaurus, ACM classification of keywords and terms…

• classification/formalization of Web 2.0 type tags
• Define classes and properties to add those

structures to an RDF universe
• allow for a quick port of this traditional data, combine it with

other data

205

Example: entries in a glossary

(from the RDF Semantics Glossary)

Assertion
 (i) Any expression which is claimed to be true.

(ii) The act of claiming something to be true.
Class
 A general concept, category or classification.
 Something used primarily to classify or categorize

other things.
Resource
 (i) An entity; anything in the universe.

(ii) As a class name: the class of everything; the most
 inclusive category possible.

206

Example: entries in a glossary in SKOS

207

A more complex structure

208

Same serialized

<http://dbpedia.org/resource/Category:Fiction>
 a skos:Concept;
 skos:altLabel "Novels", "Stories", ...;
 skos:narrower
 <http://dbpedia.org/resource/Category:Plot>,
 <http://dbpedia.org/resource/Category:Short_stories>,
 <http://dbpedia.org/resource/Category:Drama>,

 ...;
 skos:prefLabel "Fiction";
 skos:broader
 <http://dbpedia.org/resource/Category:Entertainment>;
 ...
.
<http://dbpedia.org/resource/Literature>
 rdfs:label "Literature";
 dc:subject <http://dbpedia.org/resource/Category:Fiction>;
 ...
.

209

SKOS Reference overview
• Classes and Properties:

• Basic description (Concept, ConceptScheme,…)
• Labeling (prefLabel, altLabel,…)
• Documentation (definition, historyNote,…)
• Semantic relations (broader, narrower, related,…)
• Collections (Collection, OrderedCollection,…)
• Concept mappings (broadMatch, narrowMatch,…)

210

SKOS and OWL
• SKOS is geared towards some specific (though

large) use cases, like
• taxonomies, glossaries, …
• annotations of complex structures (including ontologies)

• SKOS is a based on a very simple usage of OWL
• roughly on the rule based level
• the emphasis is on organization and not on logical

inferences

211

Find RDF Data for resources
(POWDER)

212

How to “assign” RDF data to resources?
• This is important when the RDF data is used as

“metadata”
• Some examples:

• copyright information for your photographs
• is a Web page usable on a mobile phone and how?
• bibliographical data for a publication
• annotation of the data resulting from a scientific experiment
• etc

213

If I know the URI of the resource (photograph,
publication, etc), how do I find the relevant RDF
data?

214

The data might be embedded
• Some data formats allow the direct inclusion of

(RDF) metadata:
• SVG (Scalable Vector Graphics)

• direct inclusion of RDF/XML
• via RDFa attributes

• XHTML with RDFa or microformats+GRDDL
• JPG files using the comment area and, eg, Adobe’s XMP

technology

215

Simple linkage
• Some formats have special link statements. Eg, in

(X)HTML:
<html>
 <head>
 <link rel="meta" href="meta.rdf"/>
 ...

• Similar facilities might exist in other formats (eg,
SMIL)

216

POWDER
• POWDER provides for a more elaborate scenarios:

1.define a set of resources by constraints on the URIs; eg
• URIs must begin with http://www.example.com/bla/
• the port number in the URI-s should be XYZW

2.define “description resources” that bind those resources to
additional information

3.get such description resources, eg, via a link statements, via
HTTP, via SPARQL, …

Use cases: licensing information, mobileOK (and
other) trustmarks, finding accessible Web sites,
content labeling (eg, child protection), …

217

A POWDER scenario: copyright for photos

218

The gory details…
• The “description resource” is an XML file:
<powder xmlns="http://www.w3.org/2007/05/powder#"
 xmlns:cc="http://creativecommons.org/ns#">
 <attribution>
 <issuedby src="http://www.ivan-herman.net/me"/>
 </attribution>
 <dr>
 <iriset>
 <includehosts>www.ex2.org</includehost>
 <includepathstartswith>/img/</includepathstartswith>
 </iriset>
 <descriptorset>
 <cc:license rdf:resource="http://cp:..."/>
 </descriptorset>
 </dr>

219

The gory details…
• Powder processors may then return

• direct RDF triples, eg:

•

•

• or can transform this XML file into an RDF (OWL) for more
generic processors

• a canonical processing of the XML file is defined by the
POWDER specification

<http://www.ex2.org/img/imgXXX.jpg> cc:license <http://cp:...>.

220

POWDER Service
• Online POWDER service can be set up:

• a Web service with
• submit a URI and a resource description file
• return the RDF statements for that URI

• such service should be set up, eg, at W3C
• A GRDDL transform is also defined

221

But there is a hidden “hiccup”
• RDF makes a strong separation between

• URI as an ID for a resource
• URI as a datatype (xsd:anyURI)
• there is no “bridge” between the two

• POWDER includes a small extension to the formal
semantics of RDF for two properties:
• wdrs:matchregex and wdrs:notmatchregex such that

• (R wdrs:matchregex Regex)holds iff the URI of R
matches Regex

222

If you want the OWL version…
<> wdrs:issuedBy <http://www.ivan-herman.net/me> .

_:iriset_1 a owl:Class; owl:intersectionOf (
 [a owl:Restriction;
 owl:onProperty wsdr:matchregex ;
 owl:hasValue "..ugly regex for ex2.org"^^xsd:string]
 [a owl:Restriction;
 owl:onProperty wsdr:matchregex ;
 owl:hasValue "..ugly regex for /img"^^xsd:string]
).

_:desc_1 a owl:Restriction;
 owl:onProperty cc:license;
 owl:hasValue <http://cp:...">.

_:iriset_1 rdfs:subClassOf _:desc_1 .

223

Consequences of the “hiccup”
• In practice this means that only “POWDER aware”

agents can fully handle the description files
• note that the extension is fairly easy to add, so it is not a big

implementation issue…
• Existence of the services to provide the triplets

automatically relieve the pain…

224

Other POWDER features
• There are a number of additional features:

• built in authentication: description resources must be
attributed and this is open for authentication

• assignments may carry validity dates
• packaging several resource descriptions in one, possibly

control their processing order
• using tags to identify resources instead of URI patterns

225

Rules
(RIF)

226

Rules
• There is a long history of rule languages and rule-

based systems
• eg: logic programming (Prolog), production rules

• Lots of small and large rule systems (from mail
filters to expert systems)

• Hundreds of niche markets

227

Why rules on the Semantic Web?
• There are conditions that ontologies (ie, OWL)

cannot express
• a well known example is Horn rules: (P1 P2 …) → C∧ ∧

• (though OWL property chains cover some cases)
• A different way of thinking — people may feel more

familiar in one or the other

228

Things you may want to express
• An example from our bookshop integration:

• “a novel with over 500 pages and costing less than €5 is a
cheap book”

• something like (in an ad-hoc syntax):

If { ?x rdf:type p:Novel;
 p:page_number ?p;
 p:price [
 p:currency p:€;
 rdf:value ?z
].
 ?p > "500"^^xsd:integer.
 ?z < "5.0"^^xsd:double. }
then { ?x rdf:type p:CheapBook }

229

A new requirement: exchange of rules
• Applications may want to exchange their rules:

• negotiate eBusiness contracts across platforms: supply
vendor-neutral representation of your business rules so that
others may find you

• describe privacy requirements and policies, and let clients
“merge” those (e.g., when paying with a credit card)

• Hence the name of the working group: Rule
Interchange Format
• goal is a language that

• expresses the rules a bit like a rule language
• can be used to exchange rules among engines

230

Notes on RIF
• In some ways, the goals of RIF go beyond the

“core” Semantic Web
• eg, the exchange format does not concentrate on RDF only

• But if we look at the interchange of data, then it is
in line of a general vision

• And… this is what the community wanted to do…

231

Notes on RIF (cont)
• RIF does not concentrate on RDF only

• ie, certain constructions go beyond what RDF can express
• But there is a “subset” that is RDF and also OWL

related
• For the coming few slides, forget about RDF

• We will come back to it. Promise!

232

In an ideal World

233

In the real World…
• Rule based systems can be very different

• different rule semantics (based on various type of model
theories, on proof systems, etc)

• production rule systems, with procedural references, state
transitions, etc

• Such universal exchange format is not feasible
• The idea is to define “cores” for a family of

languages with “variants”

234

RIF “core”: only partial interchange

235

RIF “dialects”

• Possible dialects: F-logic, production rules, fuzzy or
probabilistic logic, …

236

Role of dialects

237

Role of dialects

238

Role of dialects

239

Role of dialects

240

However…
• Even this model does not completely work
• The gap between production rules and “traditional”

logic systems is too large
• A hierarchy of cores is necessary:

• a Basic Logic Dialect and Production Rule Dialect as “cores”
for families of languages

• a common RIF Core binding these two

241

Schematically…
• The “BLD (Basic Logic Dialect)” is of the form:

• “if condition true then this is true”
• conditions may include functions, hierarchies

• The “PLD (Production Logic Dialect)” is of the form:
• “if condition is true then do something”

• The “Core”: shared subset of major languages
• technically: positive Horn without function terms, with some

simple datatypes

242

Hierarchy of cores

243

Current status
• There is a fairly final draft for the BLD
• The work on the PLD Core is also on its way
• The Core is defined as an abstraction from BLD

and PLD

244

RIF BLD
• RIF BLD is the closest to the needs of the RDF

world
• BLD defines

• a “presentation syntax”, which is really to… present the
constructions (is not necessarily implemented in tools)

• a formal XML syntax to encode and exchange the rules
• A BLD document is

• some directives like import, prefix settings for URI-s, etc
• a sequence of implications, possibly involving built-in

predicates on datatypes

245

RIF BLD example

Document(
 Prefix(cpt http://example.com/concepts#)
 Prefix(ppl http://example.com/people#)
 Prefix(bks http://example.com/books#)
 Group
 (
 Forall ?Buyer ?Item ?Seller (
 cpt:buy(?Buyer ?Item ?Seller):- cpt:sell(?Seller ?Item ?Buyer)
)
 cpt:sell(ppl:John bks:LeRif ppl:Mary)
)
)

infers the following relationship:

cpt:buy(ppl:Mary bks:LeRif ppl:John)

246

Additional RIF BLD features
• RIF BLD includes some extra features

• built-in datatypes and predicates
• notion of “local names”, a bit like RDF’s blank nodes
• a “frame-based” syntax (beyond predicates and functions):

• p[prop1->v1 prop2->v2]
• built-in abstractions for classes, subclassing, and typing:

• m # C, C1 ## C2
• RIF BLD’s semantics follows the “usual” approach

in logic

247

What about RDF(S), OWL, and BLD?
• Typical scenario: applications exchange rules that

refer to RDF data
• To make that work:

• RDF facts/triples have to be representable in BLD
• harmonization on the concepts is necessary (eg, classes)
• the formal semantics of the two worlds should also be

aligned
• There is a separate document that brings these

together

248

What about RDF(S), OWL, and BLD?
• Triples can be expressed in BLD using the frame

syntax:
• (s p o) is written as s[p->o]

• (a bit reminiscent of the turtle syntax but ‘[’ does not introduce
any blank node!)

• subclassing and typing of BLD are equivalent to their RDFS
counterpart

• the datatypes are (almost…) identical to OWL 2

249

Rewrite of our earlier example

Group
(
 Forall ?Buyer ?Item ?Seller (
 ?Buyer[cpt:buy->?Item cpt:from->?Seller] :-
 ?Seller[cpt:sell->?Item cpt:to->?Buyer]
)
)

We describe/exchange the rules:

250

Rewrite of our earlier example

Group
(
 Forall ?Buyer ?Item ?Seller (
 ?Buyer[cpt:buy->?Item cpt:from->?Seller] :-
 ?Seller[cpt:sell->?Item cpt:to->?Buyer]
)
)

We describe/exchange the rules:

ppl:Mary
 cpt:sell bks:LeRif;
 cpt:to ppl:John .

We then import the RDF data:

251

Rewrite of our earlier example

Group
(
 Forall ?Buyer ?Item ?Seller (
 ?Buyer[cpt:buy->?Item cpt:from->?Seller] :-
 ?Seller[cpt:sell->?Item cpt:to->?Buyer]
)
)

We describe/exchange the rules:

ppl:Mary
 cpt:sell bks:LeRif;
 cpt:to ppl:John .
ppl:John
 cpt:buy bks:LeRif;
 cpt:from ppl:Mary .

We then import the RDF data, and infer:

252

Remember the what we wanted from Rules?

@prefix p: <http://www.example.org/bookterms#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
If { ?x rdf:type p:Novel;
 p:page_number ?p;
 p:price [
 p:currency :€;
 rdf:value ?z
].
 ?p > "500"^^xsd:integer.
 ?z < "5.0"^^xsd:double. }
then { ?x rdf:type p:CheapBook }

253

The same with RIF BLD Presentation syntax

Prefix(p http://www.example.org/bookterms#)
Prefix(rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#)
Prefix(pred http://www.w3.org/2007/rif-builtin-predicate#)
Forall ?x ?p ?z (
 ?x # p:CheapBook :-
 And(
 ?x # p:Novel
 ?x[p:page_numper->?p p:price->_abc]
 _abc[p:currency->€ rdf:value->?z]
 External(pred:numeric-greater-than(?p 500))
 External(pred:numeric-less-than(?z 5.0))
)
)

254

A word on the syntax
• The RIF BLD Presentation syntax is… only syntax
• It can express more than what RDF needs
• Hopefully, a syntax will emerge with

• close to one of the RDF syntaxes with a better integration of
rules

• only the relevant subset of BLD
• note: there is a syntax called n3 that is very close…

• can be mapped on BLD implementations as they come

255

Rules vs OWL?
• In a SW application, should I use RIF, OWL, or

both?
• The two approaches are complimentary

• there are things that rules cannot really express or infer
• eg, inferencing complex relationships among classes

• there are things that ontologies cannot really express or in
only a very complicated manner

• eg, complex Horn rules
• Often, applications require both

256

What about OWL RL?
• OWL RL stands for “Rule Language”…
• OWL RL is in the intersection of RIF BLD and OWL

• inferences in OWL RL can be expressed with rules
• the rules are precisely described in the OWL spec, b.t.w.

• a BLD implementation should be able to implement OWL RL
by just feeding in the rules

• (status in Febr 2009: some details are still to be fleshed out…)

257

What have we achieved?
(putting all this together)

258

Remember the integration example?

259

Same with what we learned

260

What is coming?

261

Revision of the RDF model?
• Some restrictions in RDF may be unnecessary
• Issue of “named graph”: possibility to give a URI to

a set of triples and make statements on those
• Syntax issues in RDF/XML (eg, QNames in

properties)
• Alternative XML serializations?
• Add a time tag to statements?
• Internationalization issues with literals (how do I set

“bidi” writing?)
• …

262

Other items…
• Security, trust, provenance

• combining cryptographic techniques with the RDF model,
sign a portion of the graph, etc

• trust models
• Access control on statements or groups of

statements
• Quality constraints on graphs

• “may I be sure that certain patterns are present in a graph?”
• Ontology merging, alignment, term equivalences,

versioning, development, …
• etc

263

Other items: uncertainty
• Fuzzy logic

• look at alternatives of Description Logic based on fuzzy logic
• alternatively, extend RDF(S) with fuzzy notions

• Probabilistic statements
• have an OWL class membership with a specific probability
• combine reasoners with Bayesian networks

• A W3C Incubator Group (“Uncertainty Reasoning
on the World Wide Web”) has issued a report on
the current status, possibilities, directions, etc

• Possible RIF dialect for fuzzy logic, for example?

264

Other items: naming
• The SW infrastructure relies on unique naming of

“things” via URI-s
• Lots of discussions are happening that touch upon

general Web architecture, too
• http URI-s or other URN-s?
• URI-s for “informational resources” and “non informational

resources”
• how to ensure that URI-s used on the SW are

dereferencable
• etc

265

Other items: naming (cont)
• A different aspect of naming: what is the URI for a

specific entity (regardless of the technical details)
• what is the unique URI for, eg, Bach’s Well-Tempered

Clavier?
• obviously important for, eg, music ontologies an data

• who has the authority or the means to define and maintain
such URI-s?

• should we define characterizing properties for these and use
owl:sameAs instead of a URI?

• The traditional library community may be of a big
help in this area

266

The “layercake” diagram

267

Available documents, resources

268

Available specifications: Primers, Guides
• The “RDF Primer” and the “OWL Guide” give a

formal introduction to RDF(S) and OWL
• SKOS has its separate “SKOS Primer”
• GRDDL Primer and RDFa Primer have been

published
• The W3C Semantic Web Activity Homepage has

links to all the specifications

269

“Core” vocabularies
• There are also a number “core vocabularies” (not

necessarily OWL based)
• Dublin Core: about information resources, digital libraries,

with extensions for rights, permissions, digital right
management

• FOAF: about people and their organizations
• DOAP: on the descriptions of software projects
• SIOC: Semantically-Interlinked Online Communities
• vCard in RDF
• …

• One should never forget: ontologies/vocabularies
must be shared and reused!

270

Some books
• G. Antoniu and F. van Harmelen: Semantic Web

Primer, 2nd edition in 2008
• D. Allemang and J. Hendler: Semantic Web for the

Working Ontologist, 2008
• Jeffrey Pollock: Semantic Web for Dummies, 2009
• …

See the separate Wiki page collecting book references:
http://esw.w3.org/topic/SwBooks

271

Further information
• Planet RDF aggregates a number of SW blogs:

• http://planetrdf.com/
• Semantic Web Interest Group

• a forum developers with archived (and public) mailing list,
and a constant IRC presence on freenode.net#swig

• anybody can sign up on the list
• http://www.w3.org/2001/sw/interest/

272

Great community…

From a presentation given by David Norheim, Computas AS, ESTC2008 Conference, Vienna, Austria

273

SWBP Working Group documents
• Documents for ontology engineering

• “Best Practice Recipes for Publishing RDF Vocabularies”
• “Defining N-ary relations”
• “Representing Classes as Property Values”;
• “XML Schema Datatypes in RDF and OWL”
• etc

• See the Group’s homepage for further links

274

Further information (cont)
• Description Logic links:

• online course by Enrico Franconi,
• teaching material and links by Ian Horrocks

• “Ontology Development 101”
• OWL Reasoning Examples
• Lots of papers at WWW2003-WWW2008; see also

the ISWC200X conference proceedings (online
since ISWC2006) as well as their European and
Asian local variants

275

Lots of Tools (not an exhaustive list!)
• Categories:

• Triple Stores
• Inference engines
• Converters
• Search engines
• Middleware
• CMS
• Semantic Web browsers
• Development environments
• Semantic Wikis
• …

• Some names:
• Jena, AllegroGraph, Mulgara,

Sesame, flickurl, …
• TopBraid Suite, Virtuoso

environment, Falcon, Drupal 7,
Redland, Pellet, …

• Disco, Oracle 11g, RacerPro,
IODT, Ontobroker, OWLIM, Tallis
Platform, …

• RDF Gateway, RDFLib, Open
Anzo, DartGrid, Zitgist, Ontotext,
Protégé, …

• Thetus publisher, SemanticWorks,
SWI-Prolog, RDFStore…

• …

276

 Tools
• Worth noting: major companies offer (or will offer)

Semantic Web tools or systems using Semantic
Web: Adobe, Oracle, IBM, HP, Software AG,
webMethods, Northrop Gruman, Altova, Dow
Jones, BBN, …

• See also the W3C Wiki page on tools

277

Deployment, applications

278

• See the separate slide set…

279

Conclusions

280

• The Semantic Web is there to integrate data on the
Web

• The goal is the creation of a Web of Data

281

Thank you for your attention!

These slides are also available on the Web:

 http://www.w3.org/People/Ivan/CorePresentations/SWTutorial/

282

Appendix
• There is a separate slide set on some of the formal

semantics of RDF(S) and OWL…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282

