Storage and Querying of E-Commerce Data

Rakesh Agrawal

Amit Somani

Yirong Xu

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120
{ragrawal,asomani,yirong@us.ibm.com

ABSTRACT

New generation of e-commerce applications require datarsal
that are constantly evolving and sparsely populated. Theao
tional horizontal row representation fails to meet thesguire-
ments. We represent objects in a vertical format storingljecd
as a set of tuples. Each tuple consists of an object identifidr
attribute name-value pair. Schema evolution is now easyw-Ho
ever, writing queries against this format becomes cumipeesoVe
create a logical horizontal view of the vertical represtéotaand
transform queries on this view to the vertical table. We en¢s
alternative implementations and performance resultsshev the
effectiveness of the vertical representation for sparte dde also
identify additional facilities needed in database systensipport
these applications well.

1. INTRODUCTION

Imagine you run a marketplace for the electronics indudtinys
marketplace consolidates information about parts fromentiban
1000 manufacturers and distributors. Your current catetgains
nearly 2 million parts classified into 2000 categories. Ehare
more than 5000 part attributes across various categores.9Np-
pliers are expected to join your marketplace every week.yThe
bring with them new parts, causing new attributes to be adoled
the current categories and new categories to be added tathe c
log. You have the enviable task of designing the back-erabdete
system to support this marketplace. What do you do?

We found ourselves in this quandary while building such an ex
perimental marketplace, called Pangea. In this paper, wersu
rize our experience from implementing this applicationhwtite
hope that our observations will be useful to system devetipter-
ested in providing effective database support to e-comeregopli-
cations. The issues we faced are pervasive in the new gemesét
e-commerce applications, such as on-line shops, exchamges
ketplaces, and portals, which aggregate data from a largéen
of providers. The specific e-commerce software used in opleim

1.1 Issues

In relational database systems, data objects are conuafiyio
stored using a horizontal scheme. A data object is repredexst
a row of a table. There are as many columns in the table as the
number of attributes the objects have. In trying to storeoal
electronic parts in one table using this scheme, we ran lretdai-
lowing problems:

e Large Number of Columns The current database systems do
not permit a large numbers of columns in a table. This limit
is 1012 columns in DB2 (also in Oracle), whereas we had
nearly 5000 attributes across different categories.

e Sparsity Even if DB2 were to allow the desired number of
columns, we would have had nulls in most of the fields. In
addition to creating storage overhéanulls increase the size
of the index and they sort high in the DB2 B+ tree index.

e Schema Evolution We would need frequent altering of the
table to accommodate new parts and categories. The schema
evolution is expensive in the current database systems.

e Performance A query incurs a large performance penalty if
the data records are very wide but only a few columns are
used in the query.

Similar challenges are faced by those building large reposs
of meta data about documents in a digital library. For instan
an experimental news portal [2] being built at IBM Almaden{pr
cesses 5-10 thousand news stories every day. For everyisey
tracts a couple of hundred features such as stemmed wonjsdepe
countries, etc. The features are not fixed a priori and newrfes.
emerge as new stories are processed. A conventional htaizan
ble would need more than 100,000 columns to store the dathdor
features that have been identified to date and would needdreq
altering to add new columns to accommodate newly identiéed f
tures. Other potential applications of the work reportethis pa-
per include stores for XML [7], RDF [1], KBMS [15], LDAP [19]
and data mining [8] [21].

mentation was the IBM Websphere Commerce Server running on 1.2 Vertical Representation

top of the DB2 Universal Data Base System. However, we believ
our observations are generally applicable.

Permission to copy without fee all or part of thismaterial is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requiresa fee and/or special permission
fromthe Endowment.

Proceedings of the 27th VLDB Conference, Roma, Italy, 2001

To address the above problems, many commercial e-commerce
software systems (e.g. IBM Websphere Commerce Servercl2-Te
nology, Escalate) define the following 3-ary vertical scleefor
storing objects in a table:

[Oid (object identifier) [Key (attribute name)| Val (attribute value)|

Figure 1 shows a horizontal table and its correspondingsspta-
tion in the vertical format. The symbdl represents a null value.

! For fixed-width fields (e.g. INTEGER), the size of a null value
is same as a non-null value. A VARCHAR null value on the other
hand incurs the overhead of only one byte.

Vertical (V)

Horizontal) Oid iely Val
Oid [AL | A2 | A3 a
1 | A2 b
1 a b 1
2 | A2 | ¢
2 1 c d
2 | A3 | d
3|1 1| a
A S T 3 |A3] a
4 | AL | b
4 | A3 | d

Figure 1: Horizontal and Vertical Table Representations

The vertical table contains tuples for only those attributeat are
present in an object. Different attributes of an object &é to-
gether using the sam@id. Schema evolution is now easy; simply
add new tuples corresponding to new attributes.

However, once the data is stored in the vertical format, melp
lems arise. Writing SQL queries against this scheme becuoergs
cumbersome and error-prone. More importantly, the cuappti-
cation developmenttools designed for horizontal formasforing
objects no longer work.

Whatis needed is a logical horizontal view on top of the caiti
representation of the data and query rewrite algorithm®otwert
relational algebra operators from the horizontal view tartical
representation. This approach is conceptually identictie view
mechanism used in the database systems. Note, howevethehat
values in theKey field in the vertical format become column names
in the horizontal view. Such higher-order views are not sutgal in
the current database systems. We also need well-tunedssinge
strategies to get good query performance.

This paper describes the enablementlayer we built on tofB&f D
to realize the above functionality. The algebra and quegsy
formations we developed and the lessons we learned fromxthe e
tensive performance experiments should be of interesttabdae
practitioners interested in providing support to e-contaeand
similar applications. In building this enablement layeg won-
sciously did not change the database engine code to mak®our s
lution portable and time-expedient. However, we did idgrgome
capabilities we wish the database system had provided €Tras
capabilities should be of interest to the database enguiétacts
and implementors.

There is rich heterogeneous database research literatrens-
formations between schematically disparate schemas aed tf
schematic differences. In [10], Krishnamurthy et al. eleofly

There are now as many tables as the number of attributes. This
storage model has been implemented in the Monet System which
also developed an algebra to hide the decomposition [4]. akly e
work [16], done in the context of data base machines, alstoeegh

the option of storing table data on a per attribute basiss Tép-
resentation has also been used in the IBM’s Enterprise Dingc
LDAP product [19].

Another alternative would be to create one separate table fo
each category. Yet another alternative would be to creagetan
ble for common attributes and per category separate taire®h-
common attributes. See [7] for some other alternatives gedifar-
mance study done in the context of storing XML data. Messagin
systems such as Lotus Notes and Microsoft Exchange have also
developed specialized structures to support sparse romtaioing
optional columns. However, there is no support for SQL qinery
in these messaging systems.

We will focus on the 3-ary representation of data as outlined
in Section 1.2 (henceforth referred to as vertical represtieom).
This representation offers an interesting design poinween the
conventional n-ary horizontal representation (henckfoeferred
to as horizontal representation) and the 2-ary binary sspration
(henceforth referred to as binary representation). Lilee hibri-
zontal representation, the vertical representation regquinly one
table to store data, whereas the binary representaticis &pdi ta-
ble into as many tables as the number of attributes. Whileethe
are applications (e.g. SAP) that store data across a lamgéenof
tables, having thousands of tables instead of one makegstens
harder to manage and operate. Schema evolution is trivialthwe
vertical representation, whereas an addition (deletiba)reew at-
tribute requires “altering” the table in the horizontal repentation
and an addition (deletion) of a table in the binary represtén.

On the negative side, the vertical representation losestgping
since all values are stored as VARCHARSs in Yatfield, although
it is easy to design extensions to support data typing ifrdefsi

The horizontal representation is well studied in the dagetiter-
ature and there has been excellent work in understandiricpithe-
offs of the binary representation [4] [5] [9]. Because ofritan-
ageability and flexibility, the the vertical representatis increas-
ingly finding its way in many commercial systems. It behoahes
database community to investigate and study how best toosupp
the vertical representation to bring the new emerging apfitins
to its fold. The work we presentis a step in this directiort than-
pliments earlier work.

1.4 Organization of the Paper

elucidated how data values in one data source may be modeled a The rest of the paper is organized as follows. In Section 2, we

schema (attribute or relation) labels in another. Sevarajlages
have been proposed for querying over schema labels, img(iti8]
[17] . There is also work on defining higher-order views faein
grating heterogeneous data sources [10] [12] [14].

Closest to this paper is the interesting work presentedlihgh

discuss rewriting of the queries from the horizontal forteater-

tical format. We discuss the implementation strategieeictin 3

and give performance results in Section 4. We conclude with a
summary and some pointers for the database system praetgio

in Section 5. We also refer the reader to the extended veositis

the implementation of SchemaSQL. We share with them the goal paper [3] that contains additional explanations and petérce re-

of a“non-intrusive” implementation (i.e. without requig changes
in the database engine code). The extended-algebra we ose in
query transformations includeh andh2v operations that can
be viewed as the specializationswifold andfold respectively in
[11]. As we will see later in the paper, we have been able tiveea
substantial performance gains from this specialization.

1.3 Alternative Representations

The work on decomposition storage model [5] [9] split a hori-
zontal table into as many 2-ary tables as the number of cadumn
A common surrogate tied different fields of a tuple acrostetab

sults.

ZCreate a separate vertical table for every data type. Aagitable
maintains data type information for each attribute. Thugwight
have a scheme as shown below:

ATTRIBUTES (KEY CHAR(K)
DATATYPE CHAR(V));
V_INT(OID INTEGER, KEY CHAR(X), VAL INTEGERY;
V_FLOAT(OID INTEGER, KEY CHAR(), VAL FLOAT);
V_VARCHAR(OID INTEGER, KEY CHAR(), VAL
VARCHAR(X)):;

PRIMARY KEY,

2. TRANSFORMATIONS U*(H

2
Our overall approach is to define a horizontal viélvover a (v $0| $1 | $2
vertical tabléV. The user poses regular SQL queries over this view, $0] 81 $2 1|Al} a
which are translated into queries that run against the Uyidgr l1jlajb 1|A2] Db
vertical table. We will describe these transformationseinms of 2| Ljc 2 |A2| c
an extended algebra in this section. In Section 3, we digbeds S 3 |AL| L
implementation in a SQL system. 4 b |1 i ﬁi Jt;

2.1 Algebra

We start with the well-understood algebraic operationsgélecté),
projectfr), join(><), outer join(a=<), left outer join(3=), right
outer joing<C), cross productf), difference¢), intersectionq),

Figure 2: Results ofv2h and h2v Operations

union(), and aggregatiot{). We add two operations to this alge- ~ But for null handling, which was not discussed, tgh opera-
bra:v2h(€) andh2v(U). We define the semantics of these opera- tioniis equivalentto Unfolgh, ey on a1 (V) in SchemaSQL [11].
tions after briefly introducing a few notations. This operation is also similar to th@ather operation in [18].
Notation h2v Operation

Assume that the vertical tablé has the schem@Did, Key, Val) L : .)
with a non-nullable colummid and thatdl, ... , An are the key The h2v(U) operation is the inverse of the2h operation. Intu

itively, it takes as input a horizontal table and convert®ib a
vertical table where each column label in the horizontaletad
converted to a key value in the vertical table.
Assume a horizontal tabE having the schem@did, A1, ... , An)
with the columnOid being non-nullable 3*(H) creates a verti-
cal table with the schem@did, Key, Val). The content of/ is

values inV. The equivalent horizontal tabl® has the scheme
(0id, Al,. .., An) with the columnQid being non-nullable. We
useAk+m to represent thek-m)*" attribute. The symbal rep-
resents a null value.

We will use®%_, ¥, as a short hand fob; @, - - - ©¥,. Fora
join operation (including its outer species), unless otlige stated,

assume the join predicate to be the equalitydafl. An explicit defined by:
join predicate¥ will be specified agy. & &
_ _) U (H) = [Uizi Toid, ai,4i(0ai 0 (H))] U

Sometimes we will use $0, $1, etc. to refer to the columns of a &

result table. (Uit Toia, i, 4i(0nk_ 46 = 1/(H))] (2)
For visual clarity, we will sometimes add square bracketarin

expression as shown below. For each tuple: in H, the first term in Eq. 2 creates the tuples

. {< Oid,*Ai',h.Ai > |i =1,...,k A h.A1 # L}. The second
[¥o] © [0, ¥4] term handles the special case of a horizontal tuple that bks n

values in all of the nordid columns. Figure 2 shows the result of
applyings? to the horizontal tablé? from Figure 1.

Again, but for null handling, this operation is equivalemt t
Fold by Val on Key(V) in SchemaSQL [11]. This operation is also

similar to theScatter operation in [18].

These square brackets do not affect the order of evaluatiany
way; they are there only to enhance readability.

v2h Operation

Intuitively, thev2h(Q2) operation takes as input a vertical table and
a list of attribute names and returns a horizontal table titise

attribute names as the column labels. 2.2 Rewritings
QF(V) creates a horizontal table of arfy-1 whose first column We describe now the rewritings of the standard algebraic-ope
is Oid and the first: key values form the rest of the columng. ations on the horizontal view over a vertical table. We giwe t
The content of the table is defined by: forms of rewritings: one with and the other without using ##h
. operation. The former can be used on a SQL-92 system whereas
Q% (V) = [mowu(V)] 3« the latter can exploit the implementationw2h operation using
[T T 0id, vat (T key=r as (V)] 1) the object-relational extensions. See [3] for illustratexamples

of these rewritings.
Because of the first term on the right hand side and the usdtof le
outer join, Eqg. 1 can yield tuples with nulls in all of the n@d

columns. For exampleR? applied to the vertical tabl& from Projection
Figure 1 results in the table shown in Figure 2. Fbid = 3,V Let the projection be on attribute$l, . .. , Ak. We have, from the
does not contain tuples corresponding to key valdésand A2. definition of thev2h operation:
However, the result table contains a tuple with tBigl and null
values for attributesil and A2. mar,.. ax(H)
This semantics is consistent with the null handling in SQar. F ok
instance, a projecti i in Fi = @) ®)
, a projection of the horizontal table in Figure latn
tributes A1 and A2 will indeed preserve the tuple corresponding = [moiw(V)] 3 [D<tei moia, vai (T key=as (V)] (4)
to 0id = 3in SQL.
SHlection

®Since the columns in a relation are supposed to be orderless,)) o
strictly speaking should take column names as parameters. We We discuss the usual case of a selection followed by projectiet
have chosen this notational simplification for ease of eitjpos the selection predicate e, (43 8 ‘as’) and the projection be on

the firstk + m attributes;m > 0.

TAL,... ,Ak+m(0'/\’:=1A~; 6 ‘a,i’(H))

= mar aktm(Opk_ a6 e (7)) ®)
= T$1,.. ,$k+m(

[ﬁle T0id(OKey=as' Aval 6 ‘as' (V)]

4 [woid, vat(Orey=cacr (V))]) (6)

A disjunctive selection
Ta1,.. aktm(Ovk_ 46 air(H))

can be transformed by replacing the intersectiéin, in Eq. 6 with
the unionU%_, .

Join
Take a horizontal tablé& having the schemg0id, A1, ..., An)

which is really a logical view over a vertical tabilé Its join with a
true horizontal tablé? 7 having the schemrl, . .. , Rr) is given

by:

TAL,... Ak Rk+1,.. Retm(H B RH)
Ak_ 4i6 Ri
= TAl,. AkREk+1,.. ,Rk+m(Qk(V) > RH) (7)
Ak_ Ai6 Ri
= T$1,.. $k,Rk+1,... ,Rk+m(
[Mle WOzd,Val(O'Keyz‘Ai’(V))] > [RH])(S)
A’::1$i:Ri
Aggregation

We use the following notation from [6] to specify aggregatio

Grouping attributed” Function list(Table namg

Function list consists offijnction, attribute) pairs, wherefunc-
tion can be one of the allowed aggregate functions such as SUM,
COUNT, AVG, MAX, and MIN. The transformations are:

A, 4k F r oars1 (H)

a1, 4k F 7 oars1 (5(V))
$1,.. 8k T F $k41

(7 0ia(V)] 24 [3E2 1 70ia, vat (T key= air(V))]) (10)
For aggregate functions, SUM, MIN, and MAX, which are un-

affected by null values in the column being aggregated, Ba:ah
be simplified to:

©)

ar,.. Ak F r oaryr (H) =
$1,.. sk L F k41 (}4:5‘11 Wozd,Val(tTJ{ey:‘Ai’(V))) (11)

Set Operations

The set operations cross produc)(union(), intersectiong), and
difference() can be transformed by first applying th&h opera-
tion on the vertical table(s) and then carrying out the @elsaper-
ation.

Updates

Updates are easy. Insertion requires decomposing a da&tet oiip

a set of attribute name and value pairs and inserting theonlint
with a commorOid. A predicate-based deletion requires determin-
ing the Oid set of objects satisfying the predicate and deleting the

corresponding tuples froi. An update results in a change of the
value field in some tuples iiW. It can also cause some insertions
and deletions.

Output

There may be need for transforming the result of an operation
volving a vertical table back into the vertical format (efax. storing
the result). This can be accomplished by applyingttBe opera-
tion on the result table.

3. IMPLEMENTATION

With the algebra described above in hand, we are in a position
to develop a non-intrusive enablement layer on top of thalutete
engine that hides from the user (application) the vertiable. A
horizontal viewH is defined for the vertical tabl& using an ex-
tended DDL:

CREATE HORIZONTAL VIEW H ON

VERTICAL TABLE V USING COLUMNS 41, Az, ..., Ay)

whereA;-1 represent attribute names (keys) in the vertical table.
The DDL is generated by the enablement layer. The user poses
regular SQL queries over the view. The enablement layerepars
the SQL query, validates it, and transforms it to another §Q@éry
that runs against the underlying vertical table. It useseygraph
structure to facilitate this translation.

We consider three transformation strategies.

3.1 \VerticalSQL

This implementation assumes only the SQL-92 level capisili
from the underlying database engine. The enablement lagess u
the second set of equations for translating each of the edgeb
operations given in Section 2 for this implementation. S3ddr
an example.

3.2 \VerticalUDF

This implementation attempts to exploit object-relatiomeen-
sions to SQL, particularly the user-defined table functioifie
underlying engine is extended with the table functions/h and
h2v operations. Th&2h table function reads tuples of vertical ta-
ble sorted orOid and outputs a horizontal tuple for ea©fd. The
h2v table function takes as input column names and a horizontal
tuple and splits it into vertical tuples.

The enablement layer uses the first set of equations for-trans
lating each of the algebraic operations given in Sectionr2His
implementation. For example, the projection query:

SELECT A1, A2 FROMH
is translated inth

SELECT t.Attrl, t.Attr2

FROM V v, TABLE(v2h(v.Oid, v.Key, v.Val)) AS t(Oid,
Attrl, Attr2)

WHERE vKey="A1’ or v.Key="A2’

The query appears to be a Cartesian product between theaderti
relation V' and the table function2h. What happens in effect is
that the relevant fields from any qualifying tupleafter applying
the select predicates on thetable are passed as parameters into
thev2h function, which in turn produces horizontal tupkefom
which the fields in the select list are extracted.

Thev2h table function requires tuples to be streamed in the
Oid order so that it can buffer the key-value pairs until tDiel

“The actual translation is more complex and includes an iaddit
clause in the join list for selecting distinGid’s from V.

changes. At that point, it can output the tuple correspanttirihe
horizontal view. Unfortunately, the current SQL syntax sloet
allow the specification of the order in which the tuples sidug
streamed into a table function and that causes problems tNat

a good plan for the above query will push down Key predicates
on Al and A2 so as to select only the relevant tuples from the
V relation. However, the output of this selection would geiteer
tuples inKey or physical row-id order which is different from the
Oid order required fov 2h.

A workaround this problem is to introduce a join of the tuple
stream produced by the selection with a tablé®ad’s and cajole
the optimizer to pick a merge sort join plan, thereby forcangort
on Oid. By introducing this join and adjusting the optimization
level for the the DB2 query optimizer, we could generate the c
rect plans. We were able to play similar tricks for other hlgéc
operations.

3.3 SchemaSQL

This implementation employs the non-intrusive strategies
posed for the SchemaSQL implementation [11]. Specificaly,
implementedinfold | andunfold 11 strategied These strategies re-
sult in SQL translations that are different from the one®giin
Section 2. See [3] for details.

4. PERFORMANCE EXPERIMENTS

We now present the results of our extensive experimentsitty st
the performance of the alternative implementations of tiebée-
ment layer just described. We include in this study the parémce
comparison with the horizontal representation as well agryirep-
resentation discussed in Section 1.3. They will be refetoeds
HorizontalSQL and Binary respectively.

4.1 Experimental Setup

All experiments were run on a 600 MHz dual processor Intel
Pentium machine with 512 MB of physical memory. The opetatin

Project

density=10%

N oW A
o o© o
L L L

Executiontime(seconds)
=
o
|

o
I

200x100K

400x50K 800x25K 1000x20K

Table(#cols x#rows)
Join

density=10%,1000colsx20Krows

N
(9]

N
o
L

=
(6]
L

(9]
I

)

g////////é
g/////////é

Executiontime(seconds)

o

0.1% 1% 5%

Joinselectivity
VerticalSQL_oid M VerticalSQL_key

Figure 3: Clustering by Key versusOid

system was Windows NT 4.0 and the database system used was

DB2 UDB 7.1. The machine had two 30GB IDE drives. Data was
placed on one disk and the temporary table spaces and thedogs
created on the other. The buffer pool size was set to 50MBlaad t
prefetch size to 512KB.

To study performance characteristics over a wide range of op
erating regions, we used synthetic data that allowed usripthia
following parameters:

o Number of columns in the horizontal table

o Number of rows in the horizontal table

¢ Non-null density (i.e. percentage of field values that are no
null

. Seléctivity of a predicate for each column

o Number of distinct values in each column

e Size of each column

Given a set of these parameter values, we first generatethdata
horizontal format and then transposed it into its equiviakentical
and binary formats. We kept the size of a table (number of rews
number of columns in a row) constant by adjusting the number o
rows as we varied the number of columns. See [3] for detailsef
data generation algorithm.

We generate the following schemes for horizontal, vertiaat
binary tables respectively:

5[11] proposed another strategy, calladold |11, which avoids the
cost of creating temporary tables incurredinfold | andunfold
I1. However, as pointed out in [11], a non-intrusive implenagioh
of unfold 11 turns out to be less efficient thamfold | due to the
tuple-at-a-time nature of the implementation.

H (OID INTEGER, A0 VARCHAR(X), A1l VARCHAR(X),. . .,
An VARCHAR(X))

V (OID INTEGER, KEY CHAR(X), VAL VARCHAR(X))
TAB_A; (OID INTEGER, VAL VARCHAR(X))

where X is the size in number of bytes (set to 16) akidis the
size of the key field (set to 5). There wetédinary tables TABAj
corresponding ta: columns inF. The queries for various oper-
ations were generated using the additional parametersasutie
columns involved in the operation and selectivities.

4.2 Layout

The data for horizontal as well as binary tables was cludtieye
Oid. For the vertical table, we have two choices for the physical
layout: i) cluster byOid, or ii) cluster byKey. We performed ex-
tensive experiments and found that clusteringday consistently
resulted in much higher performance than clusterin@iy Fig-
ure 3 shows the performance of clusteringKmy versusOid for
projection and join operations. The settings for these exmEnts
are exactly the same as used for experiments reported tethe i
paper in Figures 4 and 7 respectively. We have not includeskth
graphs, but we found large gaps in performance for seleetion
well as aggregation operations.

To understand this performance difference, let us congfder
projection operation. The SQL translation of the projattap-
eration corresponding to the algebraic transformatiosgmeed in
Eqg. 4 in Section 2 contains selection predicate&eyvalues. Af-
ter applying the selection predicate using an index orkiecol-

umn, the qualifying tuples are fetched. If the data is plaf§idaid
out in theKey order, we get the benefit of clustered I/O. If, on the
other hand, the data is clustered®ig, fetching the tuples results
in unclustered I/O which is very inefficient.

4.3 Indices

Every column involved in a query on the horizontal table was
indexed. We also indexed both the columns of every binangtab
For the vertical table, we indexed each of the three columns.

Note that we end up indexing the entire data in the vertical ta
ble. Contrast this to the case of the horizontal table whestthe
columns involved in the typical query workload are index&de
found that the total size of the indices for vertical tablesviyp-
ically two orders of magnitude larger compared to the hariab
indices and large portions of the vertical indices were seful for
any of the queries. Having large indices adversely impaetper-
formance of the vertical representation because of the sipent
in loading the indices and the increase in path length dueépelr
index trees. It would have helped if the database suppor#thp
indices [20] that allow only the rows of interest to be indeéxe

4.4 Performance Results

We now summarize the important results from a very large num-
ber of experiments we performed. We will present the redaits
project, select, join and aggregation operations. We fldiglodfer
pool, main memory and file system cache before the start df eac
run to get cold start numbers.

We will report the performance of a single operation at a time
in order to isolate the trade-offs for each operation. Ofrseua
typical database query contains a combination of operstid¥e
ran several such composite queries but did not find any tremd w
could not predict having understood the trade-offs forviial
operations.

We found the implementations using the SchemaSQL strategie
performed 2-3 times slower compared to Vertical$QThe cul-
prit was the creation of a large number of intermediate temanyo
tables, a problem recognized by the implementors of Sch@ha$S
[11]. We therefore do not include the SchemaSQL numbersan th
results.

In the initial set of results, we include numbers for Horitadn
SQL, VerticalSQL and Binary. Later in Section 4.5, we présen
results that are indicative of the performance achievabta & Ver-
ticalUDF implementation.

Projection

Figure 4 shows the performance of various strategies fopthe
jection operation. The number of projected columns is 1€xehy
requiring 10-way joins with the Binary and VerticalSQL ségies.

In each graph, the execution times are shown for four hot&on
tables and their equivalent vertical and binary tables. fidr&zon-

tal tables differ in the number of rows and columns but thetialt
size (#rowsx #columns) is kept constant. The number of rows de-
creases as we move from left to right in the graphs (whichaemgl
the reduction in the execution time for all the strategi®#. show
graphs for non-null density = 5% and 10%.

The surprising result from these experiments is that \@SiQL
uniformly outperforms HorizontalSQL in spite of requirimgulti-
ple joins. The superior performance of Binary over Horizd®QL
reconfirms the results in [4] [7] [9].

The reason for the relative poor performance of the horeont
format is that the whole tuple needs to be fetched beforedhe r

This observation should not be construed as a negativerstate
against SchemaSQL, which addresses a more general problem.

(p =5%)

N w B
o o o
L L L

Executiontime(seconds)
B
o

o
I

400x50K 800x25K 1000x20K

Table(#cols x#rows)

(p =10%)

Executiontime(seconds)

200x100K

400x50K 800x25K 1000x20K

Table(#cols x#rows)

BEHorizontalSQL M VerticalSQL EBinary

Figure 4: Projection performance (10 cols)

evant fields can be extracted. There is additional cost ofrfind
where the relevant fields for a tuple lie on a page, which can be
substantial for a wide tuple with a large number of fields. Ha t
case of a vertical table, the index on tKey field allows only the
tuples corresponding to attributes participating in thgjgartion to

be retrieved. The netis a decrease in total 1/O.

Between Binary and VerticalSQL, Binary performs slightistb
ter. A tuple in the binary representation contains only ttébaite
value, whereas a tuple in the vertical representation amntzoth
attribute name (key) and value. Thus, the total I/O will bssle
in the binary scheme. Moreover, the vertical scheme regjare
additional selection on the key field for locating tuplesihgwhe
desired attribute hame, which is not needed in the binargraeh
since it has a separate table for each attribute. Later itiddet.5,
we see how the performance of the vertical scheme can be made
better than binary by using the VerticalUDF implementation

Figure 5 shows the effect on performance as the number of pro-
jected columns is varied. The experiments were run for thasda
1000x 20K and for non-null densities = 5% and 10%. The rel-
ative performance of the various strategies remains the sann
the previous experiments when number of projected colunass w
fixed at 10 (Figure 4).

We see that the performance of HorizontalSQL is insensitive
the number of projected columns. This trend can be undet$tpo
recalling that when the tuples are wide, the projectiongrerince
in the horizontal scheme is dominated by the cost of fetching

40

@ 301
c
o
(S
[0}
L
o 20 -
£
s
8
3 10 4
Q
X
ni
0 il
(p =10%)
40
o
e]
o
o
[S]
(O]
o,
(]
£
<
RS
5
(8]
[J]
x
1]
Numberofprojectedcolumns
BEHorizontalSQL M VerticalSQL EBinary

Figure 5: Impact of varying the number of projected
columns (1000 colsx 20K rows)

ples. The performance of Binary as well as VerticalSQL impso
as the number of projected columns decreases. This trendtés g
understandable since a decrease in number of projectechoslu
results in a decrease in number of joins these schemes nped to
form. However, the execution time increases rather slowlyha
number of projected columns increases and VerticalSQL and B
nary continue to outperform the horizontal scheme.

SHlection
Selection experiments were run using the following query:

SELECT A40, A200 FROM H WHERE A200 = ‘A200V0’

The experiments were run for the dataset 180BOK with non-
null densitiesp = 5% and 10%. The selectivity of the selection
predicate was set to 0.1%, 1% and 5%. Figure 6 shows thegesult

The plan for HorizontalSQL applies the selection predicate
A200 and then fetches the qualifying tuples to extract attribirte
the select list. However, since the data is clustere®ty this
causes unclustered /0O of wide tuples, hurting the perfarea
of HorizontalSQL. As the predicate becomes less selective,
amount of I/O increases and the query performance degrades.

VerticalSQL has to apply a predicate based on the valu&260
as well as theKey predicate for the projected colun#40. The
fetch following the application of thKey predicate o440 causes
clustered 1/O while the one following the application of tredue

(p =5%)

20

—
—
1
—
—_ 1
0 15 —
=) —
c —
o —1
(8] 1
Q —
&, —
© 10 A —
£ —
< —
K=} —
S 5 1
o 1 —
(9] — —
= Al
Selectionselectivity
(p =10%)
20
B 15 |
c
o
(8]
[0}
23
o 10 -
£
IS
i}
3 5
(9] —
< —
= =l H H
—
=== e = 11 s]
0.1% 1% 5%
Selectionselectivity
BEHorizontalSQL M VerticalSQL EBinary

Figure 6: Selection performance (1000 colsx 20K
rows)

predicate on4200 causes unclustered I/O. It then sorts each of
these streams o@id to do the join. However, since the tuples are
narrow, VerticalSQL ends up performing better than Hortabn
SQL.

For Binary, the optimizer chooses a table scan forA2€0 ta-
ble, followed by a sort, and a merge sort to join it with tAd0
table. Since a table scan was chosen instead of an indexwsean,
do not see much effect of selectivity on the query execuiioe t
Because of smaller indices and narrower tuples, Binanopad a
little better than VerticalSQL.

Join
For this set of experiments, we joinéfiwith a horizontal tablé&iR
whose scheme was:

HR(A1 VARCHAR(16), A2 VARCHAR(16))

HR hasp x H rows, each of which has no null value. The join
query was:

SELECT h1.A40,h2.A2 FROM H h1, HR h2 WHERE h1.A1=h2.A1

All the columns involved in the query were indexed.

The experiments were run for the dataset 180B0K with non-
null densitiep = 5% and 10%. The join selectivity was setto 0.1%,
1% and 5%. Figure 7 shows the results.

Both Binary and VerticalSQL considerably outperform Horiz
talSQL, with Binary performing a little better. The join setivity

(p =5%)
20

[
(S}
L

Executiontime(seconds)
I
o

1%
Joinselectivity

(p =10%)
20

Executiontime(seconds)

1%

Joinselectivity

BEHorizontalSQL M VerticalSQL EBinary

Figure 7: Join performance (1000 cols< 20K rows)

did not exhibit much affect on the performance of Binary ard
calSQL. The query plans for both first compute a horizontatien
consisting of attribute®id, A1 and A40. For VerticalSQL, this in-
volves selection on the key predicates, fetching the tygleding
them onQOid, and doing a merge sort join. For Binary, the selection
on the key predicate is not required since each attributé$ias/n
table (which explains the slight performance advantagehelre-
fore only requires fetching the tuples and joining thenGdd. For
both the schemes, this interim result is then joined withHReta-
ble using a merge sort join. It is only this last step that fectéd
by the join selectivity. Since the cost of entire plan is doatéd
by the 1/O required to fetch the input tuples as opposed tditiad
join, hence the execution time is not significantly affedbgdoin
selectivity.

The plan for the Horizontal scheme involves a nested loap joi
with the HR table as the outer and an index scan on the join col-
umn in the innerfd table. However, since we have an additional
column in the select list, a fetch on the inner table doesusteted
1/O to get the tuplesH is clustered orDid). This unclustered I/O
of wide tuples result in the poor performance of Horizon@lS
The amount of I/O depends on the number of tuple& ithat join.
Hence the query performance degrades with increasing §éts

tivity.
Aggregation

We measured aggregation performance by using the folloguregy:

40

w
o
L

N
o
L

=
o
L

Executionttime(seconds)

5% 10%

Density

BEHorizontalSQL M VerticalSQL EBinary

Figure 8: Aggregation performance (1000 colsx 20K
rows)

SELECT A500, AVG(LENGTH(A0)) FROM H
GROUP BY A500

The experiments were run for the dataset 1860Q0K with non-
null densitiegp = 5% and 10%. The number of groups in the result
was 100 for both densities. The average number of tupleepsec
per group was 10 and 20 for densities 5% and 10% respectively.
Figure 8 shows the results.

HorizontalSQL needs to fetch the entire tuple to extracfitids
required in the aggregation computation. The horizontakesibe-
ing wide, HorizontalSQL takes the performance hit of fetcha
large number of unnecessaryfields. The query cost is doedrmst
the I/O, not by the computation of the aggregation functlidence
we do not see much difference in performance as the density of
the data increases (which mostly increases the aggredatica
tion computation cost but affects the 1/0O marginally).

VerticalSQL and Binary have comparable performance, with B
nary performing marginally better. The query plans for btbité
strategies are similar to doing a projection of 2 columns Za
operation), followed by the computation of the aggregafiorc-
tion. However, the execution time of the query is dominatgthie
1/0O time to implement/2h and therefore we only see a marginal
increase in execution time as the density increases.

4.5 Exploiting the Object-Relational Features

We saw from the performance results just presented thait Vert
calSQL uniformly outperforms HorizontalSQL but slightiynder
performs Binary. We show in this section that with a littlettbe
support from table functions, the VerticalUDF strategy oatper-
form Binary. VerticalUDF can avoid multi-way joins VertiS&QL
performs to assemble the attribute values of a tuple. Whedse
to be ensured is that the relevant tuples from the vertiddétare
streamed into the2h table functions in th&id order. The table
function then can do the assembly and output the horizampée t

Let us first consider the projection operation. Figure 9 carep
the performance of VerticalUDF to Binary and VerticalSQifoe
same datasets as in Figure 4. We show the grapp fo10%; the
performance advantage of VerticalUDF was relatively lafge p
= 5%. The performance numbers for VerticalUDF were obtained
after adding all the contortions described in Section 3rZding
the tuples to stream into the2h table function in theOid order.
Thus, the performance numbers for VerticalUDF should bevede
as the worst-case numbers. In spite of the unnecessaryperioe

(p =10%)

30

w
©
S 204
(S
Q
&L
]
£
<
S 10 -
3
(8]
]
X
n}
o X
200x100K 400x50K 800x25K 1000x20K
Table(#cols x#rows)
M VerticalSQL EBinary H Vertical UDF

Figure 9: Projection performance (Projection of 10
cols)

(p =10%)

Executiontime(seconds)

0.1% 1% 5%

Joinselectivity

[VerticalSQL EBinary H Vertical UDF

Figure 10: Join performance (1000 colsx 20K rows)

penalty, VerticalUDF, performs uniformly better than b&imary
and VerticalSQL. The main reason for this performance wihés
avoidance of multi-way joins present in Binary and Vert®@L .
Now consider the join query used in the performance evainati
in Section 4.4. Figure 10 shows the performance of VertidlJ
VerticalSQL, and Binary for the same datasets and join selec
ties as used in Figure 7. For executing this query using thé-Ve
calUDF strategy, we would like to first apply the select pcatiks
on the key columns prior to streaming the tuples in @id or-
der into the table function. However, as discussed eatherg is
no way to specify this order on the output of the select opmrat
The workaround again is to create an additional artificial jon
Oid's and trick the optimizer into choosing a merge-sort plan fo
this join, thereby creating a tuple stream sorte@®@ith The perfor-
mance numbers for VerticalUDF, therefore, should againésed
as the worst-case numbers. It is remarkable that the peafucen
of VerticalUDF comes so close to Binary in spite of all the eon
essary overhead. Also, in a typical query, joins are oftdioieed
several projections. The performance gain in the projadtigera-
tion allows VerticalUDF to outperform Binary for such congite

queries. We found similar issues for selection and aggi@myat

We would like the table function to be able to control the oiide
which input arguments are supplied to it. The need for sucitfa
ity has been identified for other applications also [18].h table
function syntaxis extended with this feature and the o@miakes
advantage of it, we would avoid the performance penalty wbin
ducing additional operations just to force the desired oodenput
arguments. In that case, we expect VerticalUDF to outperfibie
other strategies.

5. CONCLUSIONS

Emerging applications such as e-commerce and portals ere cr

ating new threats and opportunities for database techyolbge
prevalent conventional horizontal representation isroed for
applications in which the data is dense and evolves slowig.riew
generation of applications require data schemas that pidlya
evolving and sparsely populated.

To meet the requirements of these applications, many commer

cial software systems have converged on a 3-ary verticatsep-
tation for storing objects in a table. This paper recountsaxpe-
rience from building an e-marketplace using this verticdlesne
for representing data. The application was built using 1BMBA/

sphere Commerce Server running on top of DB2. Our two main

contributions are:

¢ Design of an enablement layer that hides the complexity of

the queries over the vertical table and gives a horizongabvi

of the vertical representation to the user (applicatione W
provide transformation algebra and techniques for its non-
intrusive implementation on top of a SQL database system.

A thorough investigation of the performance trade-offshef t
vertical representation and a comparison of its perforraanc
with the horizonal and binary (2-ary) representations. The
key results are:

— The performance of the vertical representation is sensi-
tive to the choice made for clustering the data. Cluster-
ing onKey has much higher performance than cluster-
ing onOid.

— The vertical representation uniformly outperforms hor-
izontal representation for sparse data (in spite of the ex-
tremely efficient representation of null values in DB2).

— The performance of the vertical representation using
only the SQL-92 capabilities is comparable to the bi-
nary representation, the latter performing a little bet-
ter. By using table functions, the vertical representation
starts performing better than binary for the projection
operation. If the table function could provide some ex-
tra functionality (see below), the vertical representatio
can outperform binary representation for other opera-
tions also.

The major arguments in favor of the vertical representation
have been its flexibility in supporting schema evolution and
manageability (single table versus as many tables as the num
ber of attributes in the binary scheme). Based on the results
of this study, we can provide the following matrix for com-
paring the three representations:

We finally give a wish list of the capabilities we would likefm
the database system to be able to further enhance the parfoem
of the vertical representation:

Horizontal Vertical Binary [8] Internationl Business Machinel®M Intelligent Miner

Manageability + + - User’sGuide, Version 1 Release 1, SH12-6213-00 edition,
Flexibility - + - July 1996.
Performance - + + [9] S.Khoshafian, G. P. Copeland, T. Jagodis, H. Boral, and

P. Valduriez. A query processing strategy for the
o) decomposed storage model.Rroceedings of the Third

Partial indicesWe create anindex on each of the three columns International Conference on Data Engineering, February

of the vertical table. In the process, we end up indexing the 3-5, 1987, Los Angeles, California, USA, pages 636-643.
entire data in the vertical table. Having database support f [10] R. Krishnamurthy, W. Litwin, and W. Kent. Language
partial indices [20] that allow only the rows of interest ® b features for interoperability of databases with schematic
indexed will help improve the performance of the vertical discrepancies. IRroceedingsof the 1991 ACM SIGMOD
representation. Inter national Conference on Management of Data, Denver,

Enhanced table functions The table function syntax needs to Colorado, May 29-31, 1991, pages 40-49.)
be extended with additional clauses to specify the required [11] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On

order of input arguments. This facility is critical for bene efficiently implementing SchemaSQL on an SQL database
fitting from thev2h table function for assembling attribute system. InProceedingsof 25th International Conferenceon
values from the vertical table into a horizontal tuple witho Very Large Data Bases, September 7-10, 1999, Edinburgh,
performing multiple joins. Scotland, pages 471-482.

[12] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian.
First class treatment of table functions Table functions are SchemaSQL - a language for querying and restructuring
currently not treated as first class objects during the query multidatabase systems. Rroceedings of 22nd Inter national
optimization phase. Current systems do not allow table-func Conferenceon Very Large Data Bases, September 1996,
tions to register the ordering of tuples they receive, thpuu Bombay, India.
cardinality, or the order property for the tuples they proelu [13] W. Litwin and A. Abdellatif. Multidatabase interopdsiity.
Because of these limitations, optimizers often produce les IEEE Computer, 19(12):10-18, 1986.
than _optimal plans for executing queries that include table [14] R. J. Miller. Using schematically heterogeneous gtres.
functions. In SIGMOD 1998, ProceedingsACM SIGMOD International

Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA, pages 189-200.

M. Minsky. A framework for representing knowledge.
Technical Report MIT-Al Laboratory Memo 306,
Massachusetts Institute of Technology Atrtificial Intedligce

Native support for v2h and h2v operations Sincev2h and

h2v operations are fundamental primitives for the efficient
execution of queries over vertical table, they should be sup [15]
ported natively by the database system for best results.

Acknowledgments Laboratory, June 1974.

We wish to thank Jay Shanmugasundaram for providing us the
XQGM code, which we used in the enablement layer to represent
parsed queries.

6.
(1]

(2]

(3]

[4]

(5]

[6]

[7]

[16] M. Missikoff. A domain based internal schema for redatl
database machines. Rroceedings of the 1982 ACM
SIGMOD International Conference on Management of Data,
Orlando, Florida, June 2-4, 1982, pages 215-224.

[17] K. A. Ross. Relations with relation names as arguments:

REFERENCES Algebra and calculus. IRroceedings of the Eleventh ACM
Storing RDF in a relational database. S GACT-SGMOD-S GART Symposiumon Principles of
http://www-db.stanford.edu/ melnik/rdf/db.html. Database Systems, June 2-4, 1992, San Diego, California,

R. Agrawal, R. Bayardo, D. Gruhl, and S. Papdimitriou. pages 346-353.

Vinci: A service-oriented architecture for rapid develaggam [18] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating

of web applications. IMMW10, Hongkong, May 2001. association rule mining with relational database systems:
R. Agrawal, A. Somani, and Y. Xu. Storage and Querying of Alternatives and implication®ata Mining and Knowledge
E-Commerce data. Research report, IBM Almaden Research Discovery, 4(2/3), July 2000.

Center, San Jose, CA 95120, June 2001. Available from [19] S. Shi, E. Stokes, D. Byrne, C. Corn, D. Bachmann, and
http://ww. al maden. i bm com cs/ quest . T. Jones. An enterprise directory solution with DB2M

P. Boncz and M. Kersten. MIL primitives for querying a Systems Journal, 39(2):360-383, 2000.

primitive world. VLDB Journal, 8(2):101-119, October [20] M. Stonebraker. The case for partial indexd&MOD
1999. Record, 18(4):4-11, 1989.

G. P. Copeland and S. Khoshafian. A decomposition storage [21] M. Wang, B. R. lyer, and J. S. Vitter. Scalable mining for
model. InProceedingsof the 1985 ACM SSGMOD classification rules in relational databased DEAS 1998,
International Conferenceon Management of Data, Austin, pages 58-67.

Texas, May 28-31, 1985, pages 268—-279.

R. Elmasri and S. B. NavathBundamental of Database
Systems. Benjamin/Cummings, Redwood City, California,
1989.

D. Florescu and D. Kossman. A performance evaluation of
alternative mapping schemes for storing XML data in a
relational database. Technical report, INRIA, France, May
1999.

