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Abstract. RDF and RDF Schema are two W3C standards aimed at
enriching the Web with machine-processable semantic data.

We have developed Sesame, an architecture for efficient storage and
expressive querying of large quantities of metadata in RDF and RDF
Schema. Sesame’s design and implementation are independent from any
specific storage device. Thus, Sesame can be deployed on top of a va-
riety of storage devices, such as relational databases, triple stores, or
object-oriented databases, without having to change the query engine or
other functional modules. Sesame offers support for concurrency control,
independent export of RDF and RDFS information and a query engine
for RQL, a query language for RDF that offers native support for RDF
Schema semantics. We present an overview of Sesame as a generic archi-
tecture, as well as its implementation and our first experiences with this
implementation.

1 Introduction

The Resource Description Framework (RDF) [14] is a W3C Recommendation
for the formulation of metadata on the World Wide Web. RDF Schema [4]
(RDFS) extends this standard with the means to specify domain vocabulary
and object structures. These techniques will enable the enrichment of the Web
with machine-processable semantics, thus giving rise to what has been dubbed
the Semantic Web.

We have developed Sesame, an architecture for storage and quering of RDF
and RDFS information. Sesame is being developed by Aidministrator Nederland
b.v.3 as part of the European IST project On-To-Knowledge4 [9]. Sesame allows
persistent storage of RDF data and schema information, and provides access
methods to that information through export and querying modules. It features
ways of caching information and offers support for concurrency control.

This paper is organized as follows. In section 2 we give a short introduction
to RDF and RDFS. Readers who are already familiar with these languages can
3 See http://www.aidministrator.nl/
4 On-To-Knowledge (IST-1999-10132). See http://www.ontoknowledge.org/
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safely skip this section. In section 3 we discuss why a query language specifically
tailored to RDF and RDFS is needed, over and above existing query languages
such as XQuery. In section 4 we look at Sesame’s modular architecture in some
detail. In section 5 we give an overview of the SAIL API and a brief comparison
to other RDF API approaches. Section 6 discusses our experiences with Sesame
until now, and section 7 looks into possible future developments. Finally we
provide our conclusions in section 8.

2 RDF and RDFS

RDF is a W3C recommendation that was originally designed to standardize the
definition and use of metadata-descriptions of Web-based resources. However,
RDF is equally well suited for representing arbitrary data, be they metadata or
not.

The basic building block in RDF is an subject-predicate-object triple, com-
monly written as P (S,O). That is, a subject S has an predicate (or property)
P with value O. Another way to think of this relationship is as a labeled edge
between two nodes: [S]− P → [O].

This notation is useful because RDF allows subjects and objects to be in-
terchanged. Thus, any object from one triple can play the role of a subject in
another triple, which amounts to chaining two labeled edges in a graphic repre-
sentation. The graph in figure 1 for example, expresses three statements.

RDF also allows a form
of reification in which any
RDF statement itself can
be the subject or object of
a triple. This means graphs
can be nested as well as

.../twain/mark .../ISBN0001047582

"The Adventures of Tom Sawyer""Mark Twain"

hasWritten

hasName title

Fig. 1: An example RDF graph.

chained. On the Web this allows us, for example, to express doubt or support
for statements created by other people.

The RDF Model and Syntax specification also proposes an XML syntax for
RDF data models. One possible serialization of the above relations in this syntax
looks like this:

<rdf:Description rdf:about="http://www.famouswriters.org/twain/mark">
<s:hasName>Mark Twain</s:hasName>
<s:hasWritten rdf:resource="http://www.books.org/ISBN0001047582"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.books.org/ISBN0001047582">
<s:title>The Adventures of Tom Sawyer</s:title>
<rdf:type rdf:resource="http://www.description.org/schema#Book"/>

</rdf:Description>

Since the proposed XML syntax allows many alternative ways of writing down
information, the above XML syntax is just one of many possibilities of writing
down an RDF model in XML.

It is important to note that RDF is designed to provide a basic subject-
predicate-object model for Web-data. Other than this intended semantics – de-
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scribed only informally in the standard – RDF makes no data modeling commit-
ments. In particular, no reserved terms are defined for further data modeling.
As with XML, the RDF data model provides no mechanisms for declaring vo-
cabulary that is to be used.

RDF Schema is a mechanism that lets developers define a particular vocab-
ulary for RDF data (such as the predicate hasWritten) and specify the kinds of
objects to which predicates can be applied (such as the class Writer). RDFS does
this by pre-specifying some terminology, such as Class, subClassOf and Property,
which can then be used in application-specific schemata. RDFS expressions are
also valid RDF expressions – in fact, the only difference with ‘normal’ RDF
expressions is that in RDFS an agreement is made on the semantics of certain
terms and thus on the interpretation of certain statements. For example, the
subClassOf property allows the developer to specify the hierarchical organization
of classes. Objects can be declared to be instances of these classes using the type
property. Constraints on the use of properties can be specified using domain and
range constructs.

Above the dotted line in
figure 2, we see an example
RDF schema that defines
vocabulary for the RDF ex-
ample we saw earlier: Book,
Writer and FamousWriter are
introduced as classes, and
hasWritten is introduced as

.../twain/mark

FamousWriter

.../ISBN0001047582

BookhasWrittenWriter

subClassOf

type Data

Schema

domain range

hasWritten

type

Fig. 2: An example RDF Schema.

a property. A specific instance is described below the dotted line, in terms of
this vocabulary.

3 The need for an RDFS Query Language

RDF documents and RDF schemata can be considered at three different levels
of abstraction:

1. at the syntactic level they are XML documents.5

2. at the structure level they consist of a set of triples.
3. at the semantic level they constitute one or more graphs with partially pre-

defined semantics.

We can query these documents at each of these three levels. We will briefly
consider the pros and cons of doing so for each level in the next sections. This
will lead us to conclude that RDF(S) documents should really be queried at
the semantic level. We will also briefly discuss RQL, a language for querying
RDF(S) documents at the semantic level, which has been implemented in the
Sesame architecture.
5 Actually, this is not necessarily true; non-XML syntaxes for RDF exist, but XML is

the most widely used syntax for RDF.
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3.1 Querying at the syntactic level

As we have seen in section 2, any RDF model (and therefore any RDF schema)
can be written down in XML notation. It would therefore seem reasonable to
assume that we can query RDF using an XML query language (for example,
XQuery [8]).

However, this approach disregards the fact that RDF is not just an XML
notation, but has its own data model that is very different from the XML tree
structure. Relationships in the RDF data model that are not apparent from the
XML tree structure become very hard to query.

As an example, consider again the XML description of the RDF model in
figure 1. In an XML query language such as XQuery [8], expressions to traverse
the data structure are tailored towards traversing a node-labeled tree. However,
the RDF data model is a graph, not a tree, and moreover, both its edges (prop-
erties) and its nodes (subjects/objects) are labeled. In querying at the syntax
level, this is literally left as an excercise for the query builder: one cannot query
the relation between the resource signifying ‘Mark Twain’ and the resource sig-
nifying ‘The Adventures of Tom Sawyer’ without knowledge of the syntax that
was used to encode the RDF data in XML.

Ideally, we would want to formulate a query like “Give me all the relationships
that exist between Mark Twain and The Adventures of Tom Sawyer”. However,
using only the XML syntax, we are stuck with formulating an awkward query like
“Give me all the elements nested in a Description element with an about attribute
with value ’http://www.famouswriters.org/twain/mark’, of which the value of its
resource attribute occurs elsewhere as the about attribute value of a Description
element that has a nested element title with the value ‘The Adventures of Tom
Sawyer’.”

Not only is this approach inconvenient, it also disregards the fact that the
XML syntax for RDF is not unique: the same RDF graph can be serialized in
XML in a variety of ways. This means that one query will never be guaranteed
to retrieve all the answers from an RDF model.

3.2 Querying at the structure level

When we abstract from the syntax, any RDF document represents a set of triples,
each triple representing a statement of the form Subject-Predicate-Object. A
number of query languages have been proposed and implemented that regard
RDF documents as such a set of triples, and that allow to query such a triple
set in various ways.

Look again at the example from 2. An RDF query language such as, for
example, Squish [15] would allow us to query which resources are known to be
of type FamousWriter:

SELECT ?x
FROM somesource
WHERE (rdf::type ?x FamousWriter)
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The clear advantage of such a query is that it directly addresses the RDF
data model, and that it is therefore independent of the specific syntax that has
been chosen to represent the data.

However, a disadvantage of any query language at this level is that it inter-
prets any RDF model only as a set of triples, including those elements which have
been given a special semantics in RDFS. For example, since .../twain/mark is of
type FamousWriter, and since FamousWriter is a subclass of Writer, .../twain/mark
is also of type Writer, by virtue of the intended RDFS semantics of type and sub-
ClassOf. However, there is no triple that explicitly asserts this fact. As a result,
the query

SELECT ?x
FROM somesource
WHERE (rdf::type ?x Writer)

will fail because the query only looks for explicit triples in the store, whereas the
triple (/twain/mark, type, Writer) is not explicitly present in the store, but is implied
by the semantics of RDFS.

3.3 Querying at the semantic level

What is clearly required is the means to query at the semantic level, that is,
querying the full knowledge that a RDFS description entails and not just the
explicitly asserted statements.

There are at least two options to achieve this goal:

1. Compute and store the closure of the given graph as a basis for querying.
2. Let a query processor infer new statements as needed per query.

While the choice of an RDF query language is, in principle, independent of
the choice made in this respect, the fact remains that most RDF query lan-
guages have been designed to query a simple triple base, and have no specific
functionality or semantics to discriminate between schema and data information.

RQL [13,1] is a proposal for a declarative query language that does expliticly
capture these semantics in the language design itself. The language has been
initially developed by the Institute of Computer Science at FORTH6, in Her-
aklion, Greece, in the context of the European IST project MESMUSES7. We
will briefly describe the language here; for a detailed description of the language
see [13,5].

RQL adopts the syntax of OQL [7], and like OQL, the language is defined
by means of a set of core queries, a set of basic filters, and a way to build new
queries through functional composition and iterators.

The core queries are the basic building blocks of RQL, which give access to the
RDFS specific contents of an RDF triple store. RQL allows queries such as Class
(retrieving all classes), Property (retrieving all properties) or Writer (returning all
6 See http://www.ics.forth.gr
7 See http://cweb.inria.fr/Projects/Mesmuses/
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instances of the class with name Writer). This last query returns of course also all
instances of subclasses of Writer, since these are also instances of the class Writer,
by virtue of the semantics of RDFS. Notice that in RQL, these semantics are
defined in the query language itself: the formal query language definition makes
a commitment to interpret the semantics of RDFS. This is notably different
from an approach like Squish, where the designer/implementer is at liberty to
interpret the RDFS entailment using one of the options mentioned earlier, or
not at all.

For composing more complex queries, RQL has a select-from-where construc-
tion. In the from-clause of such a query, we can specify a path expression. These
allow us to match patterns along entire paths in RDF/RDFS graphs. For exam-
ple, the query

select Y, $Y
from FamousWriter{X}.hasWritten{Y : $Y}

returns all things written by famous writers, and the type of that thing, ef-
fectively doing pattern-matching along a path in the graph of figure 2. Notice
that RQL path expressions explicitly enable free mixing of data and schema
information.

4 Sesame’s Architecture

Sesame is an architecture that allows persistent storage of RDF data and schema
information and subsequent querying of that information. In section 4.1, we
present an overview of Sesame’s architecture. In the sections following that, we
look in more detail at several components.

4.1 Overview

An overview of Sesame’s architecture is shown in Figure 3. In this section we
will give a brief overview of the main components.

For persistent storage of RDF data, Sesame needs a scalable repository. Nat-
urally, a Data Base Management System (DBMS) comes to mind, as these have
been used for decades for storing large quantities of data. In these decades, a
large number of DBMS’s have been developed, each having their own strengths
and weaknesses, targeted platforms, and API’s. Also, for each of these DBMS’s,
the RDF data can be stored in numerous ways.

As we would like to keep Sesame DBMS-independent and it is impossible to
know which way of storing the data is best fitted for which DBMS or which appli-
cation domain, all DBMS-specific code is concentrated in a single architectural
layer of Sesame: the Storage And Inference Layer (SAIL).

This SAIL is an application programming interface (API) that offers RDF-
specific methods to its clients and translates these methods to calls to its specific
DBMS. An important advantage of the introduction of such a separate layer
is that it makes it possible to implement Sesame on top of a wide variety of
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repositories without changing any of Sesame’s other components. Section 5 looks
at the API in more detail.

Sesame’s functional modules are clients of
the SAIL API. Currently, there are three such
modules: The RQL query engine, the RDF ad-
min module and the RDF export module. Each
of these modules is described in more detail
in section 4.2.

Depending on the environment in which
it is deployed, different ways to communicate
with the Sesame modules may be desirable.
For example, communication over HTTP may
be preferable in a Web context, but in other
contexts protocols such as Remote Method
Invocation (RMI) or the Simple Object Ac-
cess Protocol (SOAP) [3] may be more suited.

In order to allow maximal flexibility, the
actual handling of these protocols has been
placed outside the scope of the functional
modules. Instead, protocol handlers are pro-
vided as intermediaries between the modules

Request Router

Admin Module

RDF SAIL

HTTP Protocol Handler SOAP Protocol Handler

Query Module Export Module

Repository

client 1 client 2 client 3

Se
sa

m
e

HT
TP

HT
TP

SO
AP

Fig. 3: Sesame’s architecture.

and their clients, each handling a specific protocol.
The introduction of the SAIL and the protocol handlers makes Sesame into a

generic architecture for RDFS storage and querying, rather than just a particular
implementation of such a system.

Adding additional protocol handlers makes it easy to connect Sesame to
different operating environments. The construction of concrete SAIL implemen-
tations will be discussed in section 5.

Sesame’s architecture has been designed with extensibility and adaptability
in mind. The possibility to use other kinds of repositories has been mentioned
before. Adding additional modules or protocol handlers is also possible.

4.2 Sesame’s functional modules

The RQL query module As we have seen, one of the three modules currently
implemented in Sesame is an RQL query engine.

In Sesame, a version of RQL was implemented that is slightly different from
the language proposed by [13]. The Sesame version of RQL features better com-
pliance to W3C specifications, including support for optional domain- and range
restrictions as well as multiple domain- and range restrictions. It does, however,
not feature support for datatyping as proposed in the original language proposal.
See [5] for details.

The Query Module follows the path depicted in figure 4 when handling a
query. After parsing the query and building a query tree model for it, this model
is fed to the query optimizer which transforms the query model into an equivalent
model that will evaluate more efficiently. These optimizations mainly consist
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of a set of heuristics for query subclause move-around. Notice that these pre-
evaluation optimizations are not dependent on either domain or storage method.

The optimized model of
the query is subsequently
evaluated in a streaming fash-
ion, following the tree struc-
ture into which the query

Query
Optimizer

RQL
Parser

RQL
Query

Optimized Query modelQuery model

Fig. 4: Query parsing and optimization model.

has been broken down. Each object represents a basic unit in the original query
and evaluates itself, fetching data from the SAIL where needed. The main ad-
vantage of this approach is that results can be returned in a streaming fashion,
instead of having to build up the entire result set in memory first.

In Sesame, RQL queries are translated (via the object model) into a set
of calls to the SAIL. This approach means that the main bulk of the actual
evaluation of the RQL query is done in the RQL query engine itself.

For example, when a query contains a semi-join operation over two sub-
queries, each of the subqueries is evaluated, and the semi-join operation is then
executed by the query engine on the results.

Another approach would be to directly translate as much of the RQL query
as possible to a query specific for the underlying repository. An advantage of this
approach is that, when using a DBMS, we would get all its sophisticated query
evaluation and optimization mechanisms for free. However, a large disadvantage
is that the implementation of the query engine is directly dependent on the
repository being used, and the architecture would lose the ability to easily switch
between repositories.

This design decision is one of the major differences between Sesame and the
RDF Suite implementation of RQL by ICS-FORTH (see [1]). The RDF Suite
implementation relies on the underlying DBMS for query optimization. However,
this dependency means that RDF Suite cannot as easily be transported to run
on top of another storage engine.

A natural consequence of our choice to evaluate queries in the SAIL is that
we need to devise several optimization techniques in the engine and the SAIL
API implementation, since we cannot rely on any given DBMS to do this for us.

The admin module In order to be able to insert RDF data and schema
information into a repository, Sesame provides an admin module. The current
implementation is rather simple and offers two main functions:

1. incrementally adding RDF data/schema information;
2. clearing a repository.

Partial delete (on a per-statement basis) functionality is not yet available in
the current admin module, but support for this feature is under development.

The admin module retrieves its information from an RDF(S) source (usu-
ally an online RDF(S) document in XML-serialized form) and parses it using a
streaming RDF parser (currently, we use the ARP RDF parser that is part of
the Jena toolkit [6]). The parser delivers the information to the admin module
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on a per-statement basis: (Subject, Predicate, Object). The admin subse-
quently tries to assert this statement into the repository by communicating with
the SAIL and reports back any errors or warnings that might have occurred.

The current implementation makes no explicit use of the transaction-functionality
of SAIL yet, but we expect to implement this in the near future.

The RDF export module The RDF Export Module is a very simple module.
This module is able to export the contents of a repository formatted in XML-
serialized RDF. The idea behind this module is that it supplies a basis for using
Sesame in combination with other RDF tools, as all RDF tools will at least be
able to read this format.

Some tools, like ontology editors, only need the schema part of the data. On
the other hand, tools that don’t support RDFS semantics will probably only need
the non-schema part of the data. For these reasons, the RDF Export Module is
able to selectively export the schema, the data, or both.

5 The SAIL API

The SAIL API is a set of Java interfaces that has been specifically designed for
storage and retrieval of RDFS-based information. The main design principles of
SAIL are that the API should:

– define a basic interface for storing RDF and RDFS in, and retrieving and
deleting RDF and RDFS from (persistent) repositories.

– abstract from the actual storage mechanism; it should be applicable to
RDBMSs, file systems, or in-memory storage, for example.

– be usable on low end hardware like PDAs, but also offer enough freedom for
optimizations to handle huge amounts of data efficiently on e.g. enterprise
level database clusters.

– be extendable to other RDF-based languages like DAML+OIL [11].

Other proposals for RDF APIs are currently under development. The most
prominent of these are the Jena toolkit [6] and the Redland Application Frame-
work [2]. SAIL shares many characteristics with both approaches.

An important difference between these two proposals and SAIL, is that the
SAIL API specifically deals with RDFS on the retrieval side: it offers methods for
querying class and property subsumption, and domain and range restrictions.
In contrast, both Jena and Redland focus exclusively on the RDF triple set,
leaving interpretation of these triples as an excercise to the user. In SAIL, these
RDFS inferencing tasks are handled internally. The main reason for this is that
there is a strong relationship between the efficiency of the inferencing and the
actual storage model being used. Since any particulary SAIL implementation
has a complete understanding of the storage model (e.g. the database schema in
the case of an RDBMS), this knowledge can be exploited to infer, for example,
class subsumption more efficiently.
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Another difference between SAIL and other RDF APIs is that SAIL is con-
siderably more lightweight: only four basic interfaces are pre-defined, offering
basic storage and retrieval functionality and transaction support, but not much
beyond that. We feel that in some applications such minimality may be prefer-
able to an API that has more features, but is also more complex to understand
and implement.

The current Sesame system offers several implementations of the SAIL API.
The most important of these is the SQL92SAIL, which is a generic implemen-
tation for SQL92 [12]. The aim is to be able to connect to any RDBMS while
having to re-implement as little as possible. In the SQL92SAIL, only the def-
initions of the datatypes (which are not part of the SQL92 standard) have to
be changed when switching to a different database platform. The SQL92SAIL
features an inferencing module for RDFS, based on the RDFS entailment rules
as specified in the RDF Model Theory [10]. This inferencing module computes
the schema closure of the RDFS being uploaded, and asserts these implicates
of the schema as derived statements. For example, whenever a statement of the
form (foo, rdfs:domain, bar) is encountered, the inferencing module asserts
that (foo, rdf:type, property) is an implied statement.

The SQL92SAIL has been tested in use with several DBMSs, including Post-
greSQL8 and MySQL9 (see also section 6).

An important feature of the SAIL (or indeed of any API) is that it is possible
to put one on top of the other. The SAIL at the top can perform some action
when the modules make calls to it, and then forward these calls to the SAIL
beneath it. This process continues until one of the SAILs finally handles the
actual retrieval request, propagating the result back up again.

We implemented a SAIL that caches all schema data in a dedicated data
structure in main memory. This schema data is often very limited in size and
is requested very frequently. At the same time, the schema data is the most
difficult to query from a DBMS because of the transitivity of the subClassOf
and subPropertyOf properties. This schema-caching SAIL can be placed on top
of arbitrary other SAILs, handling all calls concerning schema data. The rest of
the calls are forwarded to the underlying SAIL.

Another important task that can be handled by a SAIL is concurrency han-
dling. Since any given RQL query is broken down into several operations on the
SAIL level, it is important to preserve repository consistency over multiple op-
erations. We implemented a SAIL that selectively blocks and releases read and
write access to repositories, on a first come first serve basis. This setup allows
us to support concurrency control for any type of repository.

6 Experiences

Our implementation of Sesame can be found at http://sesame.aidministrator.
nl/, and is freely available for non-commercial use. The implementation follows
8 See http://www.postgresql.org/
9 See http://www.mysql.com/
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the generic architecture described in this paper, using the following concrete
implementation choices for the modules:

– We use both PostgreSQL and MySQL as database platforms. The reason we
are running two platforms simultaneously is mainly a development choice:
we wish to compare real-life performance.

– platforms. We have various repository setups running, combining differ-
ent stacks of SAILs (including the SQL92SAIL, the PostgreSQL SAIL, the
MySQL SAIL, and a schema cache and a concurrency handler) on top of
each repository.

– A protocol handler is realised using HTTP.
– The admin module uses the ARP RDF parser.

In this section, we briefly report on our experiences with various aspects of
this implementation.

6.1 RDFS in practice

While developing Sesame, many unclarities in the RDFS specification were un-
covered. One of the reasons for this is that RDFS is defined in natural language:
no formal description of its semantics is given. As a result of this, the RDFS
specification even contains some inconsistencies.

In an attempt to solve these unclarities, the RDF Core Working Group has
been chartered to revise the RDF and RDFS specifications. One of the results is a
formal Model Theory for RDF [10], which specifies model and schema semantics
more precisely and includes a formal procedure for computing the closure of a
schema.

As mentioned in section 5, the SQL92SAIL features an inferencing module
that follows the procedure described in the model theory. Our experiences are
that a naive implementation of this formal procedure is painfully slow, but with
relative ease it can be optimized to perform quite satisfactory. Improving this
performance even further is currently work in progress.

6.2 PostgreSQL and SAIL

In our first test setup for Sesame we used PostgreSQL. PostgreSQL is a freely
available (open source) object-relational DBMS that supports many features
that normally can only be found in commercial DBMS implementations (see
http://www.postgresql.org).

One of the main reasons for choosing PostgreSQL is that it is an object-
relational DBMS, meaning that it supports subtable relations between its tables.
As these subtable relations are also transitive, we used these to model the class
and property subsumption relations of RDFS.

The SAIL that is used in this setup therefore is specifically tailored towards
PostgreSQL’s support for subtables (which is not a standard SQL feature). It
uses a dynamic database schema that was inspired by the schema shown in [13].
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New tables are added to the database whenever a new class or property is added
to the repository. If a class is a subclass of other classes, the table created for it
will also be a subtable of the tables for the superclasses. Likewise for properties
being subproperties of other properties. Instances of classes and properties are
inserted as values into the appropriate tables. Figure 5 gives an impression of
the contents of a database containing the data from figure 2.

The actual schema involves one more table called resources. This table con-
tains all resources and literal values, mapped to a unique ID. These IDs are
used in the tables shown in the figure to refer to the resources and literal values.
The resources table is used to minimize the size of the database. It ensures that
resources and literal values, which can be quite long, only occur once in the
database, saving potentially large amounts of memory.

In the test setup, several optimizations in the SAIL implementation were
made, such as selective caching of namespaces and frequently requested resources
to avoid repetitive table lookups.

Our experiences with this database schema on PostgreSQL were not com-
pletely satisfactory. Data insertion is not as fast as we would like. Especially in-
cremental uploads of schema data can
be very slow, since table creation is very
expensive in PostgreSQL. Even worse,
when adding a new subClassOf relation
between two existing classes, the com-
plete class hierarchy starting from the
subclass needs to broken down and re-
built again because subtable relations
can not be added to an existing table;
the subtable relations have to be spec-
ified when a table is created. Once cre-
ated, the subtable relations are fixed.
Another disadvantage of the subtable-
approach is that cycles in the class hi-
erarchy can not be modeled properly in
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Fig. 5: Impression of the object-relational
schema used with PostgreSQL

this fashion.
In a new setup, we used the SQL92SAIL to connect to PostgreSQL. The cur-

rent version of this SAIL implementation takes a radically different approach: all
RDF statements are inserted into a single table with three columns: Subject,
Predicate, Object. While we have yet to perform structured testing and anal-
ysis with this approach, it seems to perform significantly better, especially in
scenarios where the RDFS changes often.

For querying purposes, the original PostgreSQL SAIL performed quite satis-
factory, especially when combined with a Schema-caching SAIL stacked on top
(see section 5). We have yet to perform structured testing on querying with the
new SQL92SAIL, but initial results show that it performs somewhat slower than
the earlier PostgreSQL SAIL, which is to be expected.
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6.3 MySQL

In initial tests with MySQL, we implemented a SAIL with a strictly rela-
tional database schema (see figure 6).

As can be seen, a number of de-
pendencies arise due to the stor-
age of Schema information in sep-
arate tables. In order to keep over-
head to a minimum, every resource
and literal is encoding using an in-
teger value (the id field), to enable
faster lookups. To encode whether
a particular statement was explic-
itly asserted or derived from the
schema information, an extra col-
umn is derived is added where
appropriate.

The main difference between this
schema and the schema used in the

id prefix name

namespaces

literals
id language valueresource literal is_derived

comment

resource class is_derived

type

property class is_derived

domain
property class is_derived

range

id is_derived

id is_derived

resource literal is_derived is_derived

subPropertyOf

class

subclass superclass is_derived

subClassOf

property

subprop superprop

subject predicate object is_derived

TRIPLES
labels

id namespace localname

resources

Fig. 6: Impression of the relational schema
used with MySQL.

PosgreSQL setup (see figure 5) is that in this setup, the database schema does
not change when the RDFS changes. In application scenarios where the RDFS
(the ontology) is unstable, this is an advantage because typically adding new
tables to a database requires more time and resources than simply inserting a
row in an existing table.
Like in the PostgreSQL SAIL, selective caching of namespaces and other op-
timization techniques were implemented in this setup. Overall, this approach
performed significantly better in our test scenarios, especially on uploading.

7 Future work

7.1 Transaction rollback support

While the SAIL API has support for transactions, it currently has no transac-
tion rollback feature. Transaction rollbacks, especially in the case of uploading
information, are crucial if we wish to guarantee database consistency. In the case
of RDF uploads, transaction rollbacks can be supported at two levels:

– a single upload of a set of RDF statements can be seen as a single transaction,
or alternatively, a single upload can be ”chunked” into smaller sets to support
partial rollback when an error occurs during the upload session.

– a single RDFS statement assertion can been seen as a transaction in which
several tables in the database need to be updated. From the user point of
view, the schema assertion is atomic (”A is a class”), but from the repository
point of view, it may consist of several table updates, for instance, in the
schema presented in figure 5, a new table would have to be created, and
new rows would have to be inserted into the ”Resources” and the ”Classes”
table.
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Both levels of transaction rollback support may help ensure database con-
sistency. Together with the concurrency support already present in the Sesame
system, this will help move Sesame towards becoming an ACID10 compliant
storage system (note that this can only be guaranteed if the platform used for
storage supports it).

7.2 Versioning support

The current version of Sesame has no support for versioning. However, concrete
plans for implementing a per-statement form of versioning exist. This basic type
of versioning will enable more elaborate versioning schemes.

7.3 Adding and extending functional modules

Sesame currently features three functional modules. We plan to extend the func-
tionality of these modules, as well as add new modules.

In the current admin module implementation, only incremental upload of
RDF statements is supported. We plan to implement more advanced update
support, most importantly support for deleting individual triples from the repos-
itory. A prototype implementation of this new feature already exists but has to
be tested and extended further.

Plans for new modules include a graphical visualization component and query
engines for different query languages (for example, Squish).

7.4 DAML+OIL support

As mentioned in section 5, the RDF SAIL API has been designed to allow
extension of the functionality, for example to include support for DAML+OIL.

In the current implementation, this support is not present however. We plan
to implement at least partial support for DAML+OIL storage and inferencing.

8 Conclusions

In this paper we have presented Sesame, a generic architecture for storing and
querying both RDF and RDFS information. Sesame is an important step beyond
the currently available storage and query devices for RDF, since it is the first
publicly available implementation of a query language that is aware of the RDFS
semantics.

An important feature of the Sesame architecture is its abstraction from the
details of any particular repository used for the actual storage. This makes it
possible to port Sesame to a large variety of different repositories, including
relational databases, RDF triple stores, and even remote storage services on the
Web.
10 Atomicity, Concurrency, Isolation, Durability. These four properties of a transaction

ensure database robustness over aborted or (partially) failed transactions.
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Sesame itself is a server-based application, and can therefore be used as a
remote service for storing and querying data on the Semantic Web. As with the
storage layer, Sesame abstracts from any particular communication protocol,
so that Sesame can easily be connected to different clients by writing different
protocol handlers.

We have constructed several concrete implementations of the generic archi-
tecture, using PostgreSQL and MySQL as repositories and using HTTP as com-
munication protocol handlers.

Important next steps to expand Sesame towards a full fledged storage and
querying service for the Semantic Web include implementing transaction rollback
support, versioning, extension from RDFS to DAML+OIL and implementations
for different repositories. This last feature especially will be greatly facilitated
by the fact that the current SAIL implementation is a generic SQL92 implemen-
tation, rather than specific for a particular DBMS.
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