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Chapter 1

Introduction

In 1994 Tim Berners-Lee introduced the concept of the Semantic Web. The
Semantic Web is a extension of the traditional web that can be roughly described
as an attempt of injecting a semantic meaning to all of the information that
populate the web [28]. Nowadays the Semantic Web can count on a solid base
of literature and developed software.

In the Semantic Web world the information is encoded in some specific lan-
guages where the associated semantics can be understood not only by human
beings as it is with the commonly spoken languages but also from the com-
puters. People communicate to each others using complex languages like, for
example, the English language. Machines are unable to understand such lan-
guage. For example the sentence “Alice eats an apple” contained in a web page
is for a machine nothing more than a mere sequence of bytes. Instead a person
can read this sentence and derive some new information like that “Alice” is a
person, that “eats” is a word that indicate the action of eating and that “apple”
is a fruit. All this information cannot be derived by a machine because it cannot
catch and manipulate the semantics contained in the sentence.

Semantic Web addresses this problem by introducing a set of standards and
tools organized in a stack called Semantic Web stack. The aim of Semantic Web
is to provide a set of technologies in such a way that machines can somehow
process the information using the semantics contained in it. In the Semantic
Web machines can retrieve certain information more efficiently than before or
being able to derive new information from an existing data set[28].

The process of deriving new information is called reasoning and there are
already some programs that do this in a efficient way [29] [3] [14]. However in
the last years the amount of information in the Semantic Web has considerably
increased making the reasoning process a data intensive problem where the
physical constraints of a single machine are a notable limitation. Scalability
is an essential feature because the Semantic Web is based on the top of the
traditional web and experience showed how rapidly the amount of available
information has increased on Internet. If Semantic Web wants to continue its
ascensions in usage and popularity it must provides tools that can handle a large
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6 CHAPTER 1. INTRODUCTION

amount of information.

In this thesis I will address the problem of reasoning over a large
amount of data using a distributed system, and, more in details, us-
ing the MapReduce model[4] offered by the Hadoop framework. The
hypothesis is that the reasoning process can be efficiently translated
into one or more MapReduce jobs and the purpose of this work is
to verify it.

In order to prove this hypothesis we designed and evaluated some algorithms
that do RDFS [8] and OWL [27] reasoning with the MapReduce programming
model. In this document we describe these algorithms in detail along with the
performances we have obtained in our tests.

1.1 Outline

The rest of this chapter focuses on the advantages and disadvantages of using
a distributed system. The other chapters are organized as follows. Chapter
2 describes some ground terms and the technologies used in this work so that
the reader has enough knowledge to understand the rest. In case the reader
is already familiar with MapReduce and the Semantic Web technologies this
chapter can be easily skipped. Chapter 3 contains an overview of some related
work and of some already existing reasoners. Chapter 4 presents an algorithm
that compresses the data using dictionary encoding. Data compressiong is a
technical problem that, though is not strictly related to reasoning, is necessary
for our final purpose. Chapter 5 discusses about the design and implementation
of an algorithm that does RDFS reasoning. Chapter 6 does the same about OWL
reasoning. Chapter 7 reports the results obtained with our implementation and
an analysis of the performances. At last, chapter 8 reports the conclusions and
some possible future extensions of this work.

1.2 Parallel and distributed reasoning

Today just thinking of storing all the web information on one machine is pure
science fiction. The resources of one machine are way too small to handle even
a small fraction of the information in the web. Semantic Web is probably in the
same situation than the former web at its beginning. It is necessary to move
from a single environment perspective to a distributed setting in order to exploit
the Semantic Web on a global scale.

With a distributed system we overcome the limitation of physical hardware
constraints, but other problems are introduced making this problem not trivial
to solve. In general we are able to exploit the advantages of a distributed system
only if we can partition the input so that the single nodes can work without
communicating to each others. If there is a strong correlation between the data
we cannot split the input and the nodes cannot operate independently. The
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communication between the nodes generates overhead with the consequence of
worsening the performances.

Unfortunately the data in Semantic Web is strongly correlated and the rea-
soning process worsens it because the derived information connects the data
even more than before. This consideration does not play in favor of a dis-
tributed system but we still aim to find way to partition efficiently the data so
that we can exploit the advantage of parallelism.

Another problem that arise if we use a distributed system is load balancing.
We must take care that the workload is equally distributed between the nodes,
otherwise some of them will work much more than the others and we will miss
all the advantages in having a parallelization of the computation.

The MapReduce programming model [4] is described in detail in section 2.6.
Here we will simply sketch it as a programming model where the computation is
defined in jobs and every job consists in two phases: map and reduce. Map is a
function that creates some partitions over the input data. Reduce is a function
that processes each of these partitions one by one.

The methodology of first partitioning and then further process the partitions
provides an high level of parallelism. The main advantage of using a MapReduce
framework is that we can concentrate on the logic of the program (design the
map and reduce functions) without worrying so much about the execution and
everything that concerns technical details.

Encoding reasoning as a MapReduce job means solving two problems. The
first problem consists in how to partition the data in order to reason over it and
this is not trivial because of the high correlation. The second problem consists
in how to process the partitions and eventually infer new triples.

The first problem is solved by writing an appropriate map algorithm. Anal-
ogously the second problem implies writing a proper reduce algorithm. After we
have defined them, the framework will execute the job in a pseudo-transparent
way with an high degree of parallelization.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Background

In this chapter we will describe the technologies that are used in this work
with the purpose of providing a basic and common background to ease the
understanding of the rest of the document.

Basically the problem we deal with consists in processing some data in input
deriving some new information out of it. We call this process “reasoning” over
the data. The data in input can be encoded either in RDF or OWL and the
reasoning depends on which language the data is encoded in.

In section 2.1 we outline more formally what the term reasoning means for us
giving an overview of the types of reasoning that is possible to do. In section 2.2,
we provide a basic description of the Semantic Web illustrating the Semantic
Web stack and the XML language. Section 2.3 contains a brief description of
RDF/RFDS while section 2.5 does the same for the OWL language. In section
2.6 we describe the MapReduce programming model with a simple example. At
last, in section 2.7 we report a brief description of the Hadoop framework that is
the framework used for the implementation and the evaluation of our approach.

2.1 Reasoning

Reasoning can be roughly defined as a process from which we derive new in-
formation using an already existing set of data. In general reasoning can be
divided in either deductive or inductive reasoning.

In this thesis we will discuss only of deductive reasoning. In deductive rea-
soning if certain premises are true then also a certain conclusion must be true
[12]. Let’s make a simple example, using a RDF construct.

Suppose we have two triples:

Alice isa Student .
Student subclassof Person .

An example of deductive reasoning could be: if someone is a something (first
premise) and this something is a subclass of something else (second premise)

9
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then someone is a something else.
Following this deductive process we are able to derive the new information

Alice isa Person .

We can represent the reasoning through rules. A rule is made by a set of
premises and one or more conclusions. An example of rule is

if A type B
and B subclassof C
then A type C

In the example above, the deductive process that derived that Alice is a
Person can be condensed in this last rule. In general whenever we find some
information that matches the rule’s premises we can derive the information
contained in the conclusion.

Reasoning is also divided in two other categories, backward and forward
reasoning, depending on which starting point we take as input. If we take the
existing information as starting point and we want to derive all the possible
statements then we are doing forward reasoning. In the example above we
applied forward reasoning because we started from two existing triples and we
checked if the premises were true so that we could derive the new information.

Backward reasoning works as follows. We pick one conclusion (like Alice isa
Person) and see if the premises for this conclusion hold. This process is done
recursively till we “walk back” to the input data. If the input data confirms the
premises then we can successfully assert that the information is true.

There are advantages and disadvantages in choosing either forward or back-
ward reasoning. The first is normally used when we need to materialize every
statement out of an existing input. The second is mainly used for queries or
verify if some conclusions are correct.

In this thesis when we talk about reasoning we mean forward deductive
reasoning encoded as a set of rules. We can see the reasoner implemented in
this thesis as a program that applies a set of rules continuously to a set of data
till nothing else can be derived anymore.

We distinguish two different reasoners, one that exploits the constructs of
RDF Schema and one that works with the data in OWL format. The first is
referred as RDFS reasoner while the second as OWL reasoner. The first reasoner
is simpler than the second in terms of complexity.

2.2 Semantic Web and XML

Semantic Web is a set of tools and languages that are composed in the so called
Semantic Web stack [28]. This stack is reported in Figure 2.1.

As we can see from the figure the Semantic Web uses XML as a standard
language [5]. What HTML is for the web XML is for the Semantic Web. Prac-
tically all the information in Semantic Web is encoded in XML. The choice of
using XML to represent the information is due to two reasons:
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Figure 2.1: The semantic web stack

• with XML we can encode a wide range of data and this is a necessary
condition since in the Semantic Web data can be of any possible form;

• XML is already widely used. There are already many parsers and writers
that make the transmission of the information possible between different
systems.

We report below a small fragment of a possible XML document:

<order>
<productId>p1</productId>
<amount>12</amount>
<company>X</company>

</order>

Using XML we are able to structure the information in a tree using some
specific tags. In this example we can impose for example that an order (defined
with the tag <order>) must contain a product and an amount and not viceversa.
The structure can be defined either with the DTD (Document Type Definition)
or with the W3C XML Schema.

XML does not provide a semantics for the tag nesting [22]. For example
in the reported example the meaning between <order> and <company> is
ambiguous. The information contained in that small fragment could be intended
as:

The company X made an order of 12 units of product p1.

or
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The order should be requested to company X and it consists of 12
units of product p1.

The comprehension of the document is left to the context where it is used.
The different parties who exchange XML data must beforehand agree on the
semantics of the data they exchange [5]. This operation can be easily done if
there are two (or a small number) of fixed parties but on the web where there
are many actors this operation becomes difficult.

2.3 RDF

RDF consists in a data model released by W3C on 19991. With RDF the
information is encoded in statements, where each statement consists in a triple
of the form object attribute value [15].

Every triple can be seen as a small sentence composed by a subject, a pred-
icate and an object. An example of statement can be the triple “Alice eats
apple” where Alice is the subject, eats is the predicate and apple is the object.
The same triple can also be seen in terms of the relation object-attribute-value.

In RDF the elements that compose a triple are called resources[15]. Re-
sources can be either URIs, literal or blank nodes. In a typical Semantic Web
setting Alice could be the URIs that point to the home page of that person. The
choice of using URIs as standard identifiers instead of simple text is due mainly
because the URI nomenclature is standard in the traditional web and because an
URI is supposed to be unique over the web and therefore ideal to identify unique
entities. In XML and RDF URIs are often reported in the abbreviated form
namespace:fragment. For example the URI http://www.w3.org/1999/02/22-rdf-
syntax-ns#type is often abbreviated in rdf:type.

An RDF statement can be serialized in different formats. The most com-
mon formats are RDF/XML2, N33, N-triples4 and Turtle5. The first is an XML
format. In this way RDF inherits all the advantages about the syntax interop-
erability of XML. However RDF is independent by XML and can be represented
in other formats that share nothing with XML (like N3 or N-Triples) [22]. Below
we report a small example of the same RDF information encoded in different
formats.

RDF/XML:

<rdf:Description rdf:about="http://www.student.vu.nl/~jui200">
<hasName>Jacopo Urbani</hasName>

</rdf:Description>

1http://www.w3.org/TR/PR-rdf-syntax/
2http://www.w3.org/TR/rdf-syntax-grammar/
3http://www.w3.org/DesignIssues/Notation3
4http://www.w3.org/TR/rdf- testcases/#ntriples
5http://www.w3.org/TeamSubmission/turtle/
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N-Triples:

<http://www.student.vu.nl/~jui200>
<hasName>
"Jacopo Urbani" .

An RDF document is made by a set of statements. Using RDF Schema
we are able to define a vocabulary over the data model providing a form of
semantics that is accessible at a machine level.

2.4 RDF Schema

As we have seen before, RDF is a standard language that allows us to encode the
information using statements made of triples. The RDF Schema (abbreviated
RDFS) is an extension of RDF that allows the users to define the vocabulary
used in RDF documents [2]. Through RDF Schema we are able to define some
special relations between the resources which have a unique meaning. One
example is “rdfs:subClassOf”. To explain better let’s take the two statements

Person rdfs:subClassOf LivingCreature .
Alice rdf:type Person.

The first statement uses a special RDFS predicate which has the unique
meaning “being a subclass of”. Since the meaning is unique the machines are
able to manipulate the information according to a certain logic. In our case
we design an algorithm that, according to certain rules, is able to infer new
information.

The meaning is not context dependent. If the RDFS statements (for ex-
ample that ones that define subclasses) are exchanged between two different
applications they will still keep their meaning because “is subclass of” is a re-
lation that is domain independent. This feature is a step towards the semantic
interoperability aimed by the Semantic Web [22].

2.4.1 RDFS reasoning

In the example reported right above we can derive that Alice is a living creature
using the relation “subClassOf”. This means we can exploit some of the RDFS
constructs to derive new information.

Recalling what said in section 2.1, for us doing some reasoning means con-
tinuously apply some rules on the input data. In case the input is encoded
using the RDFS constructs there are 14 different rules we can use to infer new
information [8]. The rules are available on the web 6 but since during this thesis
we will often refer to them we report them also in table 2.1.

6http://www.w3.org/TR/rdf-mt/#RDFSRules
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Number If... then...
1 s p o (where o is a literal) : n rdf:type rdfs:Literal
2 s rdfs:domain x u rdf:type x

u s y
3 p rdfds:range o v rdf:type o

s p v
4a s p o s rdf:type rdfs:Resource
4b s p o o rdf:type rdfs:Resource
5 p rdfs:subPropertyOf p1 p rdfs:subPropertyOf p2

p1 rdfs:subPropertyOf p2
6 p rdf:type rdf:Property p rdfs:subPropertyOf p
7 s p o s p1 o

p rdfs:subPropertyOf p1
8 s rdf:type rdfs:subClassOf s rdfs:subClassOf rdfs:Resource
9 c rdfs:subClassOf c1 v rdf:type c1

v rdf:type c
10 u rdf:type rdfs:Class u rdfs:subClassOf u
11 c rdfs:subClassOf c1 c rdfs:subClassof c2

c1 rdfs:subClassOf c2
12 s rdf:type rdfs:ContainerMembershipProperty s rdfs:subPropertyOf rdfs:member
13 s rdf:type rdfs:Datatype s rdfs:subClassOf rdfs:Literal

Table 2.1: RDFS reasoning rules
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During the implementation a particular attention was put in every single
rule, trying to optimize the execution of the ruleset in order to speedup the
computation.

2.5 OWL

With RDF Schema it is possible to define only relations between the hierarchy
of the classes and property, or define the domain and range of these properties.
The scientific community needed a language that could be used for more complex
ontologies and therefore they started to work on a richer language that would
be later released as the OWL language [22].

The language OWL was standardized by W3C on 20017. OWL is a merge
of two not-standardized languages DAML [10] and OIL [6]. OWL falls into the
category of ontology languages. These are languages that we can use to formally
express a particular domain.

OWL is built upon RDF and therefore the two languages share the same
syntax. An OWL document can be seen as a RDF document with some specific
OWL constructs. However, a complete compatibility between OWL and RDF
brings some problems concerning the reasoning and this is due to the high
express ability of the RDF primitives.

To fix this the standardization group derived three different versions of OWL
that enclose each others. These versions are called OWL Full, OWL DL, OWL
Lite [22].

OWL Full corresponds to the full specification of the OWL language. In
OWL Full there is a complete compatibility with RDF but this comes at the
price of computational intractably. Said in simpler words it is impossible to
write a complete and efficient reasoner for OWL Full because this problem is
simply undecidable and therefore not implementable by a computer algorithm.

To solve this problem of intractability two smaller subsets of OWL Full were
standardized for which it is possible to implement an efficient form of reasoning
[27]. These two languages are OWL DL and OWL Lite.

OWL DL and OWL Lite are less expressible than OWL Full and not com-
pletely compatible with RDF. However, the big advantage of these smaller lan-
guages is that they permit a feasible reasoning. The three languages are one
subset of the other.

The main difference between OWL and RDF/RDFS stands on the much
higher expressiveness that we can reach with OWL [22]. Two consequences of
having an higher expressiveness are that the reasoning is much more sophisti-
cated but also much more difficult to implement in an efficient way.

2.5.1 OWL reasoning

Most of the OWL data present in the web is OWL Full. Even the most common
ontologies violate some of the assumptions made in OWL DL [11]. However

7http://www.w3.org/TR/owl-features/
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reasoning over OWL Full is an undecidable problem and rule-based semantics
for OWL Full are (yet) not known [27].

Herman J. ter Horst considered a small fragment of OWL and proposed in
[27] a non-standard semantics called the pD∗ semantics. The fragment pD∗ has
a semantics that is weaker than the standard OWL Full semantics but in pD∗
the computation of the closure has a low complexity (NP or P in a special case)
and can be expressed with a set of rules like RDFS.

These rules are more complex than RDFS because they require multiple
joins over the data, or joins between two instance data. Since we will mention
the OWL rules many times during this paper, we will report them in table 2.2.

2.6 The MapReduce programming model

MapReduce is a distributed programming model originally designed and imple-
mented by Google for processing and generating large data sets [4].

The model is built over two simple functions, map and reduce, that are
similar to the functions “map” and “reduce” present in functional languages
like Lisp [16].

The Google MapReduce programming model has proved to be performant
since the simple principle of “mapping and reduce” allows a high degree of paral-
lelism with little costs of overhead. Today the Google’s MapReduce framework
is used inside Google to process data on the order of petabytes on a network of
few thousand of computers.

In this programming model all the information is encoded as tuples of the
form <key,value>.

The workflow of a MapReduce job is this: first, the map function processes
the input tuples returning some other intermediary tuple <key2,value2>. Then
the intermediary tuples are grouped together according to their key. After,
each group will be processed by the reduce function which will output some new
tuples of the form <key3, value3>.

2.6.1 Example: Counting occurences of words

Let’s take a simple problem that is often used to explain how MapReduce works
in practice. The problem consists in counting the occurrences of single words
within a text and it can be solved by launching a single MapReduce job.

As first we convert the input text in a sequence of tuples that have both as
key and value all the words of the text. For example the sentence “MapReduce
is a programming model.” will be converted in five tuples each containing one
word of the sentence both as key and as value.

Then we define the map algorithm as follows: for every tuple in input of
the form <word,word>, the algorithm returns an intermediate tuple of the form
<word, 1>. The key of this tuple is the word itself while 1 is an irrelevant value.

After the map function has processed all the input, the intermediate tuples
will be grouped together according to their key. The reduce function will simply
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Number If... then...
1 p rdf:type owl:FunctionalProperty v owl:sameAs w

u p v
u p w

2 p rdf:type owl:InverseFunctionalProperty v owl:sameAs w
v p u
w p u

3 p rdf:type owl:SymmetricProperty u p v
v p u

4 p rdf:type owl:TransitiveProperty u p v
u p w
w p v

5a u p v u owl:sameAs u
5b u p v v owl:sameAs v
6 v owl:sameAs w w owl:sameAs v
7 v owl:sameAs w v owl:sameAs u

w owl:sameAs u
8a p owl:inverseOf q w q v

v p w
8b p owl:inverseOf q w p v

v q w
9 v rdf:type owl:Class v rdfs:subClassOf w

v owl:sameAs w
10 p rdf:type owl:Property p rdfs:subPropertyOf q

p owl:sameAs q
11 u p v x p y

u owl:sameAs x
v owl:sameAs y

12a v owl:equivalentClass w v rdfs:subClassOf w
12b v owl:equivalentClass w w rdfs:subClassOf v
12c v rdfs:subClassOf w v rdfs:equivalentClass w

w rdfs:subClassOf v
13a v owl:equivalentProperty w v rdfs:subPropertyOf w
13b v owl:equivalentProperty w w rdfs:subPropertyOf v
13c v rdfs:subPropertyOf w v rdfs:equivalentProperty w

w rdfs:subPropertyOf v
14a v owl:hasValue w u rdf:type v

v owl:onProperty p
u p v

14b v owl:hasValue w u p v
v owl:onProperty p
u rdf:type v

15 v owl:someValuesFrom w u rdf:type v
v owl:onProperty p
u p x
x rdf:type w

16 v owl:allValuesFrom w x rdf:type w
v owl:onProperty p
u rdf:type v
u p x

Table 2.2: ter Horst OWL reasoning rules
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Algorithm 1 Example: counting words occurences

map( key , va lue ) :
// key : word
// v a l u e : word

output . c o l l e c t ( key , 1)

reduce ( key , iterator va lue s ) :
count = 0
for value in va lue s

count = count + 1
output . c o l l e c t ( key , count )

count the number of tuples in the group because the number of tuples reflects
the number of times the mappers have encountered that word in the text. It
will output the result in a tuple of the form <word,count>. This tuple encodes
the number of times that the word “word” appears in the input text. An overall
picture of this particular job execution is given in figure 2.2 while in Algorithm
1 we report the pseudo code for this example.

Figure 2.2: Execution of the word count example

2.6.2 Parallelism of the job execution

The map and reduce functions work only with a small fraction of the input and
do not need to have access to other data. Therefore the execution of these two
functions can be efficiently distributed on several nodes after we have split the
input in chunks of equal size. With a MapReduce framework like Hadoop the
user can submit some jobs to the framework and the framework will execute
them on the available nodes taking care of all the technical details.
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A typical execution of a MapReduce job is depicted in figure 2.3. First the
master (that in case of Hadoop is called “jobtracker”) splits the input in several
chunks and then it assigns to the workers the execution of the map tasks on
all the input splits. The workers will read the input split that was assigned to
them, execute the code of the map algorithm, and store locally their output.
The output will be partitioned according to the tuple’s key and each partition
will be processed by a particular reduce task. The framework will assign each
of the reduce tasks to the workers and they will remotely fetch the information
they need, execute the reduce algorithm and return the tuples in output.

Figure 2.3: Parallel execution of a MapReduce job

2.6.3 Programming rigidity

The simplicity of this paradigm (first map, then reduce) allows the framework
to efficiently distribute the several tasks but it also brings a rigidity that does
not give so much flexibility in terms of programming. The user cannot do
anything else then a sequence of map and a reduce. This is one of the main
disadvantages of the MapReduce programming model. Send back the data in
output to a mapper or process only particular tuples are two operations that are
not possible. Certain operations cannot be encoded with a single map/reduce
sequence and the framework is strict on it. The only way to implement complex
operations is to launch several consequent jobs. The high performances that we
can achieve come at the price of a programming rigidity.

One particular problem that is difficult to treat with the MapReduce frame-
work consists in executing a join between data from different sources. This
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operation is difficult because we need to have access to a variety of information
at the same time in order infer a relation between it. For example if we want
to join the information about a student with the information about the grades
we need to have access to both parts at the same time. In MapReduce all the
information is encoded as a tuple <key, value> and the information contained
in one tuple is supposed to be self-contained and independent; in other words
MapReduce assumes we do not need information contained in other tuples to
process a particular one. This assumption allows the framework to efficiently
parallelize the work but in this specific case it is a limitation because, as we
have seen in the previous sections, in order to be able to do some reasoning we
need to have access to more than one triple at the same time.

2.7 The Hadoop framework

The Hadoop framework8 is an Java open source project hosted by the Apache
Software foundation and it has in Yahoo! one of its biggest contributors. Hadoop
implements the MapReduce programming model and it is a free alternative to
the Google’s MapReduce framework that is not publicly accessible. Actually
Hadoop is the most popular and used MapReduce framework and this is mainly
due to its open source license and to the intense development that was done in
the last years.

The Hadoop framework runs over a network of computers and it uses a
distributed filesystem for the data storage. The user is able to launch some
MapReduce jobs on the framework which will spread the execution between
the nodes in the network. A typical MapReduce job reads the input from the
distribute filesystem, processes it and writes the output back on the filesystem.
Hadoop offers a distributed filesystem called HDFS that is tightly connected to
the rest of the framework. HDFS is not the only choice for the data storage
since Hadoop can use other filesystems, like the Amazon S3 for example, but
HDFS is heavily integrated with Hadoop and it is easy to install and configure.

The first action taken by Hadoop is to analyze the input text and splits it
in some fragments, where each of them will be processed by a single mapper on
the network. These fragments are equally divided so that all the mappers (that
are executed on different machines) receive the same amount of input.

In the framework there are four different types of programs running. The first
is called “jobtracker” and it acts as a sort of master that submits and coordinates
the jobs executions on the different computational units. The “namenode” is the
counterpart of the “jobtracker” for the distributed system HDFS. The namenode
takes care of the replication of the blocks organizing and keeping trace of the
nodes activity. The “tasktracker” is the program that actually does the job’s
computation. A tasktracker accepts the assigned tasks given by the jobtracker
and reports to him the results obtained. Every computational node in the
network has a tasktracker running on it. The tasktracker can be seen as the
worker of the network. The last program is the “datanode” and it is the same of

8http://hadoop.apache.org/core/
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the “tasktracker” for the HDFS filesystem. An installation of Hadoop contains
at least one jobtracker plus many tasktracker and, in case it uses HDFS, one
namenode plus many different datanodes. Normally the datanodes are executed
on the same machines as the tasktrackers, so that these will contemporary act
as a slaves for both the Hadoop computation and for the HDFS storage.

Before the job can be launched it must be properly configured. The frame-
work requires the user to indicate which mapper and which reducer should be
used and how the input and output should be processed.

A MapReduce job works with the information encoded by tuples and the
real nature of the data is hidden. It could be that the input consists by single
files or by some database tables. A MapReduce job only sees the information
encoded as tuples and the real source of the data is unknown. For this reason
Hadoop uses some specific types of objects to process the I/O translating the
data from their original format to a sequence of tuples. The user must configure
the job indicating which types of object should be used for it. There are four
types of objects that are involved in this I/O task.

The first is called input format. The input format is called at the beginning
of the job and its purpose is to divide the input in several input splits, one for
every mapper of the job. This object returns for every input split a specific
record reader that will be used by the mapper to fetch the tuples in input. The
record reader reads the content of the input split that was assigned to him and
translates the information from a byte oriented view (the content of the file) to
a “record oriented” view where the information consists in a list of tuples of the
form <K,V>. These tuples will be the input of the map algorithm.

There are two other types of objects that are used to write the output of the
job. These two are the output format and the record writer. The first formats
the output of the job while the second writes physically the records outputted
by the reducer.

Hadoop offers many standard objects to read and write the standard formats.
For example Hadoop includes an input format called FileInputFormat and a
FileOutputFormat to read and write the data in some files. If the user needs
to preprocess the I/O in a particular way he can implement custom versions of
these objects and use them instead of the standard ones.
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Chapter 3

Related work

In this chapter we will briefly explain some relevant work done in the area so
that the reader can place this thesis in a broader context. First we will report a
brief description of some existing reasoners that are available on Internet. This
is done in section 3.1. Then we will continue in section 3.2 describing some work
about reasoning on a large scale. Finally, in section 3.3, we describe some works
concerning the dictionary encoding of the data.

3.1 Classical reasoning

The Java suite openrdf-Sesame [3] offers a RDFS reasoner along with a complete
framework for the storage and the manipulation of RDF data in the various
formats. Sesame offers also a plug-in mechanism that allows other third part
software’s to performs different types of reasoning. For example SwiftOWLIM
[14] is a plug-in that allows in-memory OWL pD∗ reasoning. The authors claim
that Sesame can load 10-20 million of triples on a machine with appropriate
hardware1.

Another framework written in Java is Jena [18] which provides a rule-based
inference engine. The framework provides by default a RDFS reasoner and an
incomplete OWL/Lite reasoner but the user can extend the reasoners adding
some custom rules. With a persisten layer storage called TDB Jena has loaded
1.7 billion of triples in 36 hours with a single machine2.

Pellet [25] and FaCT++ [29] are other two programs that do OWL DL
reasoning. These reasoners are not typically used for the materialization of
new statements but more for checking the ontology consistency or instances
classification. We could not find benchmarks with data sets greater than 1
million of instances, therefore it is unclear how they scale with bigger data sets.

The program BigOWLIM [14] (a proprietary version of the above mentioned
SwiftOWLIM) can load more than 1 billion triple using sophisticated techniques

1http://esw.w3.org/topic/LargeTripleStoreshead-2bd211f37828030e68760a955240be22444d8910
2http://esw.w3.org/topic/LargeTripleStoreshead-d27d645a863c4804acbbe268091681ec01ee9903
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of disk caching. They also provide OWL reasoning using a single machine and
they have reported their performances on [13].

Some benchmark tools were developed to evaluate the performances of the
reasoners. Some of these benchmarks consist in tools that generate an artificial
data set that can be used by different reasoners. One of them is LUBM [7]
which is a program that generates data about universities. We have used it to
test the performances of our OWL reasoner. Another similar benchmark tool is
UOBM [17], that includes both OWL Lite and OWL DL constructs. There are
also benchmarks about querying the data sets with SPARQL: these are BSBM3

and SP2Bench[24].

3.2 Large-scale reasoning

[11] reports the description of an OWL reasoner which focuses on doing OWL
reasoning with data crawled on the web. We borrowed from them the idea of
splitting the instance data from the schema data because the last one is much
smaller and we are able to load it in memory. They have also implemented the
ter Horst fragment but they filter out all the data that could lead to an explosion
of the derivation. They motivate the choice of filtering the data because it is
possible to find some data in the web that is not standard compliant and just
applying blindly the rules results in an enormous amount of derivation which
mostly does not make sense. In the article they reported the performances with
100 million triples using 1 machine and the results show sublinear scalability.

Our approach share many concepts with this work, but ours is based on a
loosely coupled distributed system while theirs is supposed to use shared data
structures to calculate the joins. This makes a direct comparison difficult.

Some approaches to do reasoning with large data sets uses distributed sys-
tems to improve the scalability. A good introduction paper about distributed
systems is [1]. The authors give a definition of distributed system and describe
15 different programming languages that deal with the parallelism. They also
describe what are the differences between sequential programming languages
and parallel programming languages. This paper, though is relatively old, is
still a good introduction for who does not have experience with distributed
systems and programming languages.

An approach for parallel OWL reasoning is reported in [26]. Here the authors
propose two solutions where they partition the data in two ways and compute
the closure over these partitions on the network nodes. The two approaches
differ for the partitioning method. In the first case they partition the data
and every nodes compute the closure only on a single partition. In the second
case the partition is done over the rules and every single nodes apply only
certain rules over all the data. They have implemented it but they report the
performances only on small datasets of 1 million of statements.

[21] presents a technique based on a self-organising P2P network where the
data is partitioned and exchanged among the different peers. The reported

3http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/index.html



3.3. DICTIONARY ENCODING 25

results are on relatively small datasets and they show sublinear scalability.
[23] proposes an approach where every node executes only certain rules and

all the data must go through all the nodes. In this way a single node can become
the bottleneck of the system, and this does not scale for large amount of data.

[20] presents a framework built on the top of Hadoop called Pig. Pig of-
fers the possibility to the user to run queries in a SQL fashion over the data
translating them in a proper sequence of MapReduce jobs. An interesting user
case of Pig is described in [19] where they discuss over the implementation of a
SPARQL query engine using this framework.

Another extension of MapReduce is reported in [30] where the authors ex-
tends the original programming model made by a map and a reduce adding
one last phase called “merge”. In this last phase the partitioned and sorted
results that are returned by the reducers are merged together in an additional
phase. In the paper the authors demonstrate how this model can express rela-
tional algebra operators like the joins. Such model could be used to execute a
data join between the triples, unfortunately they do not provide any working
implementation, therefore we could not test it.

3.3 Dictionary encoding

Dictionary encoding is a general problem that is relevant in many different fields,
from information retrieval to data compression.

There are several techniques to store the dictionary in memory. A nice com-
parison between several data structures is given in [31]. From the comparison
it resulted that the fastest data structure is the hash table. In this papers the
authors propose also a new hashing algorithm called move-to-front where the
accessed value is relocated on the top of the chain. This optimization speeds up
the performances of the hash table.

A new data structure, called Burst tries, is proposed in [9] and, though is
not as fast as a pure hash table, it outperforms significantly the binary trees.

In case the documents use a large dictionary the amount of main memory
cannot be enough to keep it in memory and therefore we need to cache it on disk.
There are several implementation available for disk based hashtables, some are
offered by libraries like BerkleyDB 4 or by opensource projects like DBH 5.

4http://www.oracle.com/technology/products/berkeley-db/je/index.html
5http://dbh.sourceforge.net/
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Chapter 4

Dictionary encoding as
MapReduce functions

We need to compress the triples from the N-Triples format to another one that
takes less space. The technique of dictionary encoding is widely used to compress
the data and there is much research on the subject.

In this chapter we discuss over several approaches to do so. First we can use
Hadoop to distribute the computation and use a centralized Sql server to store
the dictionary. This approach is described in section 4.2. Since the centralized
Sql server can become the bottleneck of the application, we can instead use a
distributed cache to store the dictionary. This second option is described in
section 4.3. There is another approach where we only use Hadoop without any
other external support. This last approach is faster than the other ones and it
is described in section 4.4.

4.1 Why do we need dictionary encoding

The input dataset that we use for our tests consists in a set of about 800 million
triples encoded in N-Triples and compressed with Gzip. This dataset contains
triples from some of the most common repositories on the web like dbpedia,
freebase, wordnet, etc.

The data, compressed with gzip, takes about 8 GB of space. We do not
know the size of the uncompressed input but this can be roughly estimated
decompressing some files and make a proportion.

We picked up some files as a test. Every single file contains 10000 triples and
in a compressed format it takes about 80 KB. The same file, uncompressed, is
about 1.4 MB. We can estimate a compression factor of 1:16 thus if the complete
dataset in compressed format is about 8 GB then if we decompress it we can
expect a size of about 130-150GB.

When we consider whether the data should be further compressed we need
to evaluate if it is worth to do so. The tasks of encoding and decoding takes

27
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a time that should be detracted from the gain we obtain working with the
encoded data. In other words, if encoding the data brings us an advantage of
x in terms of computational speedup, we have to make sure that the time of
encoding and decoding the data is not greater than x, otherwise the conversion
will be pointless. In our case an obvious conversion consists in replacing the
three resources of a triple by three numbers and storing somewhere the table
with the association < number, text >. Basically what we do with dictionary
encoding is to assign an unique number to every resource and represent the
triples as the sequence of three numbers. This does not affect the reasoning
process because when we reason over two triples we do not care if it is a number
or text since the only operation we do with them is a comparison. The encoded
text can be later decoded replacing the numbers with the original terms.

In our case the encoding brings a clear advantage: as it will be explained
later, during the reasoning phase we need to keep stored in the main memory
a small amount of data. In the dataset we used for our experiments this small
amount consists in about 2 million triples. If we consider as 25 bytes the av-
erage length of an URI then storing a triple will take about 75 bytes. If we
multiply this number by 2 millions we conclude that this small amount takes
about 140MB, that is an amount still feasible for actual machines but not small
considering that there are several Hadoop tasks running on the same machine
and that the task itself needs a considerable amount of memory to run. Instead
if we substitute the text with numbers, let’s say with integers, the triple will
occupy only 12 bytes against the original 75. The same data will take only
22MB against the original 140MB.

The main problem in building a dictionary is that we need to have access
to a centralized data structure that acts as a dictionary repository. This, of
course, is fine when the input size is not so big and the job can be done by a
single machine, so that the dictionary can be kept in memory. This is not our
case because the data is too big. Consider that in our input there are about
300 million unique resources. Recalling our previous estimation of the size of
the URIs, a single row of the table <number, text> takes about 84 bytes, so if
we multiply it for 300 millions it will take in toto 24GB, that is a prohibitive
amount for a single standard machine.

4.2 Dictionary encoding using MapReduce and
a central database

A first approach could be to write an Hadoop job that reads the triples in textual
form, contacts a centralized Mysql server, fetches the associated number for the
text and return the triples converted. The advantage in doing so is that we
can parallelize the conversion of the triples since the execution is distributed
on many nodes but the problem stands on the fact that all of these nodes need
to communicate with a centralized server. We can make an estimation of how
long this communication process takes. Let’s assume that a single query to a
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Mysql database can take 10ms (counting the latency of the communication over
the network and the processing time on the server side). We have 800 millions
triples, therefore we need to make 2.4 billion queries, one for each resource. If
we multiply this number for 10 ms we see that it will take approximately 6.5
million of hours. If we parallelize the computation splitting the task over the
nodes in Hadoop, we need about 6.5 million computers to finish the task within
1 hour, assuming that the server can serve millions of requests at the same time.
We see that even if we reduce the querying time to 1ms from the initial 10ms
the approach is clearly unfeasible.

4.3 Dictionary encoding using MapReduce and
a distributed hashtable

To solve the problem of the centralized server’s bottleneck we can analyze the
frequency of the unique resources in the input dataset to see if there are some
URIs that are more popular than others. If the popular URIs outnumber sig-
nificantly the others we can use a cache to keep the most popular in memory
and access to the database only if the URI is not present. For this purpose we
can implement two simple Hadoop jobs that count the unique resources in the
data and report in output their frequency’s distribution.

These two jobs are very simple: the first reads in input the triples and during
the mapper phase it outputs the three parts of the triple as <Resource, 1>. In
the reduce phase the key is filtered (because the duplicated URIs are grouped
together) and the frequency is counted in a similar way than in the word count
example explained in section 2.6. The second job reads in input the output of
the previous job and counts how many URIs have the same frequency so that
we can draw a distribution of the frequency.

From the analysis of the distribution we can evaluate whether a cache will
help or not. In case it does we can use an hash table to store the dictionary
instead of a relational table. A distributed hash table distributes the information
of the hash table among different nodes caching locally the most popular ones.
The advantage of this approach is that we are not using a centralized structure
anymore and that we can exploit that advantages of caching on every node
the most popular terms. There are several implementation of distributed hash
tables, but for this work we only have considered HBase.

HBase is a subproject of Hadoop and therefore it is well integrated with the
rest of the framework. It is a relatively young project but it is under heavy
developed and it has the support of big companies like Yahoo!. With HBase we
can store and retrieve elements from hash tables but we cannot do any relational
operations like joins or projections. The hashtables in HBase are column-driven
and are meant to store billion of entries. HBase is used nowadays to store tables
of billion of rows each with million of columns.

In our case we can use an hash table in HBase as a data structure to store the
dictionary and the nodes can access it when they need to encode or decode the
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data. However there is a problem of how to assign the number to the resources.
If we use a centralized Mysql server we can set the “number” column as auto
incremental and every time we insert a new term in the table the database can
assign automatically a number to it. In HBase this is not possible and we have
to first manually assign a number to a resource and then upload the tuple into
the hashtable. In our tests this approach did not perform well, and since the
queries to the distributed cache were slower than 10ms it was soon abandoned.

4.4 Dictionary encoding using only MapReduce

Here we show how we can do dictionary encoding using only MapReduce func-
tions without any other external support. We do this by using two MapReduce
jobs that first assign to every resource an unique number and then rebuild the
triples using the numbers instead of the text.

4.4.1 Overview

What we do is to exploit the ability of Hadoop to partition and group the keys
during the reduce phase to assign the numbers to resources.

The first job reads the triples in input, during the map phase it assigns
to every triple an unique id and it outputs three tuples with as key the three
resources the compose the triple and as values the triple id and the resource’s
position in that triple. The reducer does two things. First it assigns to the
resources an unique id. Then it iterates over the values of the tuples returning
for every value a new tuple with the number associated to the resource as key
and the triple id in which the resource appeared plus its position in it as value.

The second job reads in input the output of the previous one. The mapper
swaps the key with the value returning a tuple that has as key the triple id
and as value the resource itself plus the resource’s position in the triple. The
reducer will group together the tuples that have the same triple id. Every group
will have three tuples, each of them having as value the resource number plus
the resource position in that triple. With this information the reducer is able
to return in output the original triple with the resource numbers instead of the
resource text.

In the next two sections we will present these two jobs more in detail.

4.4.2 First job: assign number to the URIs

The first job receives in input in compressed files that contain the triples in the
N-Triples format.

For this particular task we have developed a custom input format and a
record reader so that the input could be automatically uncompressed and re-
turned as a tuples of the form <Null, Text> where Text is a single triple coded
in N-Triples format. It is nice to remark again how the Hadoop framework
allows the user to abstract completely the underlying nature of the input. The
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input could be made of simple files or consists in a database table. The record
reader hides completely the nature of the data simply returning a sequence of
tuples <key,value>.

The mapper first assigns to every triple in input an unique id. Since the
mappers are executed on different machines and one triples is processed only by
one mapper, we must take care that every mapper assigns an unique id to every
triple. What we can do is to partition the number space in such a way that
every mapper task can only assign numbers within a certain range. For example
the first mapper task can only assign numbers from 0 to 100, the second mapper
task only from 101 to 200 and so on. In this way we avoid the risk that two
mappers assign the same number to two different triples.

After, the mapper splits the triples in input in three parts: subject, predicate
and object. It outputs three different tuples that have as key each of these three
parts. The tuples values consist in a number that encodes the triple id (that is
the same for all the three) and the position of the resource in the triple.

The encoding of the tuple’s value is done in the following way. In the first 7
bytes it encodes the triple id. The triple id is composed as follows. In the first
3 bytes the task encodes its own task id. The task id acts as a sort of marker
that indicates the starting point of the range in which the mapper can assign
the numbers. In the next 4 bytes it writes the value of a local counter that the
mapper increases for every triple in input. The combination of the task id and
of the local counter is an unique number that represents the triple’s id.

In the last byte of the tuple’s value we encode the position of the resource
in that particular triple.

For example if we have in input the triple:

<s> <p> <o> .

the mapper will output the three tuples

<s, triple_id+subject>
<p, triple_id+predicate>
<o, triple_id+object>

The resources will be grouped together during the reduce phase. First the
reducer assigns an unique number to each of the resources. Then it iterates
over the values associated with the key and outputs a tuple having as key the
number assigned to the resource and as value the one fetched from the iterator.

The ids are assigned in a similar way than before, with the task id on the
first 3 bytes and a local counter value in the last 4. With this approach we won’t
assign consequent numbers because it can be that the number of input processed
by the reducer is smaller than the numbers available in the range. However this
is not a big issue because: first, we are more interested in compressing the output
than in building a nice and efficient dictionary and second, we can limitate the
gap between the partitions choosing a range that is as close as possible to the
real size of the reducer’s input so that there are only few numbers left out. The
algorithm is reported in Algorithm 2.
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Algorithm 2 Dictionary encoding: first job

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : t r i p l e in N−t r i p l e s format
l o c a l c o u n t e r = l o c a l c o u n t e r + 1
t r i p l e i d = t a s k i d in f i r s t 3 bytes + l o c a l c o u n t e r
r e s o u r c e s [ ] = s p l i t ( va lue )
output . c o l l e c t ( r e s ou r c e [ 0 ] , t r i p l e i d + s u b j e c t )
output . c o l l e c t ( r e s ou r c e [ 1 ] , t r i p l e i d + p r e d i c a t e )
output . c o l l e c t ( r e s ou r c e [ 2 ] , t r i p l e i d + ob j e c t )

reduce ( key , iterator va lue s ) :
// I a s s i g n an unique id to the resource in ’ key ’
l o c a l c o u n t e r = l o c a l c o u n t e r + 1
r e s o u r c e i d = t a s k i d in f i r s t 3 bytes + l o c a l c o u n t e r

for ( va lue in va lue s )
output ( r e s o u r c e i d , i t r next )

The tuples in output contains the relations between the resources and the
triples. The only moment when we have access to the resource both as num-
ber and as text is during the execution of the reducer task, therefore here we
must take care of building the dictionary that contains the association <num-
ber,text>. The dictionary can be stored in a distributed hash table, in a mysql
database or simply in some separated files. If we do not store the dictionary we
won’t be able to decode the triples to their original format.

4.4.3 Second job: rewrite the triples

This second job is easier and faster to execute than the previous one. The
mapper reads the output of the previous job and swap the key with the value
and it sets as the tuple’s key the triple id and as value the resource id plus the
resource position.

In the reduce phase the triples will be grouped together because the triple
id is the tuple’s key. The reducer simply scrolls through the values and rebuild
the triples using the information contained in the resource id and position.

In our implementation the triples are stored in a Java object that contains
the subject, the predicate and the object represented by long numbers. The
object takes 24 bytes of space to store the resources plus one byte to record if
the object is a literal or not. That means that one triple can be stored on disk
with only 25 bytes. There are 800 million of triples, therefore the uncompressed
encoded version requires only 19GB to be stored, against the 150GB necessary
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Algorithm 3 Dictionary encoding: second job

map( key , va lue ) :
// key : resource id
// v a l u e : t r i p l e id + p o s i t i o n
output . c o l l e c t ( va lue . t r i p l e i d , key + value . p o s i t i o n )

reduce ( key , iterator va lue s ) :
for ( va lue in va lue s )

i f value . p o s i t i o n = s u b j e c t do
s u b j e c t = value . r e s ou r c e

i f value . p o s i t i o n = p r e d i c a t e do
p r e d i c a t e = value . r e s ou r c e

i f p o s i t i o n = o b j e c t n o t l i t e r a l do
ob j e c t = value . r e s ou r c e
o b j e c t l i t e r a l = f a l s e

i f p o s i t i o n = o b j e c t l i t e r a l do
ob j e c t = value . r e s ou r c e
o b j e c t l i t e r a l = true

output ( nu l l ,
t r i p l e ( subjec t , p red i ca te , ob ject , o b j e c t l i t e r a l ) )

to store the triples in the original format. Using this technique the compression
level is about 1:8.

4.4.4 Using a cache to prevent load balancing

The first job can suffer of a load balancing problem that can slow down the
computation. If a particular resource is very popular there will be many inter-
mediate tuples with the same key and all of them will be sent and processed by
a single reducer task that is executed on a single machine.

This load balancing problem is limited by the fact that we send only the triple
id and not the complete triple as value, so that even the reducer has to process
more values these are just 8 bytes each, so that the difference is still little. If the
frequency of the nodes is spread uniformly the difference is not noticeable but if
there are few extremely popular resource then the problem arises also if we just
use numbers. To solve this problem we can initially identify which resources are
extremely popular and prevent by being processed by a single reducer task.

We can identify the popular resources by launching a job that counts the
occurrences of the resources in the data. After we have done it we can, manually
or with a script, assign a number to the most popular resources and store this
association in a small text file.

This file can be loaded by the mapper and kept in memory in a hash table as



34CHAPTER 4. DICTIONARY ENCODING AS MAPREDUCE FUNCTIONS

a in-memory cache. Before the mappers output the tuples they check whether
the resources are present in this hash table. If they are, instead of setting the
resources as key they set a specific fake key of the form:

"@FAKE" + random_data + "-" + ID_MANUALLY_ASSIGNED

The random data prevents that all the tuples with the same ID end in the
same reducer. When the reducer assigns a number to the key it checks first if
the key starts with “@FAKE” and if it does it simply extracts the end of the
string and use that number instead of a new one. In this way we assure that all
those resources will get the same number even if they are processed by different
reducers. Using the cache we greatly decrease the impact of load balancing with
the effect of speed up the computation.



Chapter 5

RDFS reasoning as
MapReduce functions

In section 2.4.1 we described the theory behind RDFS reasoning. We defined it
as a process in which we keep applying certain rules to the input set until we
reach a fix point.

The RDFS reasoning can be done in different ways. The development process
of the algorithm started with a very simple and dummy implementation and it
went through many changes until it ended in a final and tested version.

This section describes three possible algorithms starting from the first naive
one and ending in a more refined and optimized version. This explanation
reflects the development process of the program that was developed along with
this work. The first two versions are no longer present in the current code
because they are obsolete and inefficients. The third and final algorithm is
described more in detail and it is the one used to evaluate the performances of
our approach.

5.1 Excluding uninteresting rules

The RDFS reasoner consists in a ruleset of 14 rules (reported in table 2.1)
that we have to apply to the dataset. In this ruleset there are certain rules
that are trivial and uninteresting and we will exclude them from our discussion.
Those rules are rule number 1,4a,4b,6 and 10. The decision of leaving them
out lies on the fact that they produce a trivial output that cannot be used for
further derivations. Said in other words, they do not produce information that
is usable for our reasoning purposes. These rules work using only one triple in
input and, in case the user requires the reasoner to behave as a standard RDFS
reasoner (therefore returning also this trivial output), we can easily implemented
by simply apply a single and load balanced MapReduce job at the end of the
computation.

To explain better why these rules are unimportant let’s take for example the

35
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rules 4a and 4b. Basically what these rules do is to explicitly mark any URI that
is subject or object in a triple as a type of rdfs:Resource. These rules are trivial
and indeed very easy to implement, but the output of them cannot be used for
further derivation. The only rules that could fire using the output of rules 4a
and 4b are rules 2,3,7 and 9 but they will never do. The reason stands on the
fact that if we want that rules 2 and 3 fire then rdf:type must have a domain or
a range associated with it. Also, if we want that rules 7 and 9 fire then rdf:type
must be defined as a subproperty of something else or rdfs:Resource as a subclass
of something else. Since both rdf:type and rdfs:Resource are standard URIs
defined by the RDF language the user is not allowed to change their semantic
adding custom domains or ranges or defining them as subclass of something
else. If there are such triples in input they should be simply ignored because
these are dangerous triples that try to redefine the standard language (more
about ontology hijacking is said in section 3). If we assume the input data is
clean and comply to the standard then rules 2,3,7 and 9 will never fire and we
can safetly claim that rules 4a and 4b produce an output that cannot be used
for further reasoning. The same motivation applies also for the other excluded
rules. After we leave these uninteresting rules out, the ruleset becomes a subset
made of 9 different rules.

5.2 Initial and naive implementation

In the program that we developed we first apply a technical job that converts
the data in N-Triples format in a more convenient format for us. This job is
not important for our reasoning task because it is strictly technical. The only
thing it does is to convert the information in Java objects stored in files called
“SequenceFile”.

A “SequenceFile” is a file that stores the information as tuple of <key,value>.
Both the keys and values are particular Java objects that implement a specific
Hadoop interface called “WritableComparable”. This interface defines some
methods that the objects use to serialize themselves in a stream (that is a
filestream in case of the SequenceFile). The advantage of storing the input data
using a sequence file lies on the fact that Hadoop is able to automatically com-
press and decompress these files and it offers predefined input readers that read
them in a transparent way. The information is already encoded as <K,V> so
the input can be read in a straightforward way without any conversion.

In this initial version the reasoning is done by 9 different jobs, where each of
them implements one rule. These jobs are repetitively launched until we reach
a fix point. We will not describe all the single jobs because they are all very
similar to each others. Instead we will just pick one rule and report a job as
example.

5.2.1 Example reasoning job

The rule we take as example is:
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if a rdf:type B
and B rfds:subClassOf C
then a rdf:type C

If we want to apply this rule we first need to search if there is a common
element between any two triples in the input data. The triples must comply
with the format written in the rule’s antecedents. In this particular example
one triple must have as predicate the URI rdf:type while the second must have
instead rdfs:subClassOf. The two triples must share at least one element, in this
particular case the object of the first must be the same as the subject of the
second.

We can describe the reasoning as a process that first try to join different
triples, and then, in case the join is possible, asserts of new information. If we
see the derivation process under this point of view, we can rewrite the problem
of applying a particular rule as the problem of finding all the possible joins
between the information in the dataset.

We can implement a data join for the rule we reported above with one
MapReduce job. In such job the mapper checks whether the input triple is a
“type” triple or a “subclass” triple. If it is a type triple it outputs a new tuple
with as key the object of the triple and as value the triple itself. Instead, if it
is a subclass triple, it outputs as key the triple’s subject instead of the object.

The reducers will group the tuples according to their key. That means that
if there are some “type” triples with the object equals to the subject of other
“subclass” triples they will be grouped together. The reducer will iterate the
list saving in memory the two types of triples in the group. It will then proceeds
emitting the new derived information. We report the algorithm in Algorithm 4.

All the nine different rules have the same structure: the mappers output the
tuples using as keys the possible URIs that could be the match points. The
reducers will check whether the match occurs and when it happens they will
simply output the new information.

There are many problems in this first implementation. The first and most
important is a load balancing problem. If an URI is very popular and used in
many joins then all the triples involved with that URI will be sent to a single
reducer that must be able to store them in memory. Another problem relies
on the fact that we need to launch a variable number of jobs depending on the
input data. For example, if we take the subclass transitivity rule (the 11th rule
in table 2.1), it will take logn jobs to derive everything if the input contains a
subclass chain of n triples (a subclass b, b subclass c, c subclass d and so on).

All of this makes the implementation unusable and indeed this version was
abandoned almost immediately. The second implementation approaches the
problem in a different way to overcome the two problems just illustrated above.

5.3 Second implementation

The main problems that were encountered for the previous implementation can
be resumed in the list:
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Algorithm 4 RDFS reasoning: example naive implementation

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : t r i p l e

i f value . p r e d i c a t e = rd f : type then
output ( va lue . object , va lue )

e l s e i f value . p r e d i c a t e = r d f s : s u b c l a s s then
output ( va lue . sub jec t , va lue )

reduce ( key , iterator va lue s ) :
for t r i p l e in va lue s

i f ( t r i p l e . p r e d i c a t e = rd f : type then
types . add ( t r i p l e )

e l s e
s u b c l a s s e s . add ( t r i p l e )

for ( typeTr ip l e in types ) do
for ( s u b c l a s s T r i p l e in s u b c l a s s e s ) do

newTriple = typeTr ip l e . sub ject , rd f : type , s u b c l a s s T r i p l e . ob j e c t
output ( nu l l , newTriple )

• load balancing problem: doing a join in the reducer phase can be prob-
lematic in case there are very popular URIs shared by many triples;

• complexity program: if there is even one single chain of subclasses in the
data we need many more jobs to compute a complete closure.

The second implementation solves these two problems rearranging the rule’s
execution order and loading the schema triples in memory.

5.3.1 Rule’s execution order

We notice that all the nine rules output four different types of triple. Rules
5 and 12 output schema triples that define subproperty relations. All these
triples can be distinguished by the others because they have rdfs:subPropertyOf
as predicate. Rules 8, 11 and 13 return similar triples than the previous rules
but with rdfs:subClassOf as predicate. Rules 2, 3 and 9 output data triples that
define the type of some particular resources. All these triples share rdf:type as
predicate. Only rule 7 outputs a triple that can be of every nature.

If we look at the antecedents of the rules we are also able to make certain di-
visions. Rules 5 and 10 only work with schema triples that either define subclass
of subproperty relations between the resources. Rules 8, 9, 12 and 13 work with
a subset of the triples with (rdf:type), (rdfs:subClassOf ) or (rdfs:subPropertyOf )
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as predicate. Only rule 2, 3 and 7 can virtually accepts any triple in input. The
relations between the rules are useful because if we launch the rules execution
in a special order we can limitate the number of jobs that are necessary for the
complete closure. Figure 5.1 reports the connection between these rules.

Figure 5.1: RDFS rules relations

The ideal rule’s execution should start from the bottom of the picture and
go to the top. That means we should first apply the transitivity rules (rule 5
and 11), then apply rule 7, then rule 2 and 3, then rule 9 and finally rules 8,
12 and 13. These three rules potentially can output triples that can be used
by the initial transitivity rules but if we look more carefully we see than this
is not the case. Rule 8 outputs a triple that could be used by rules 9 and 11.
We exclude the case of rule 9 because the output would be that a resource x
is type rdfs:Resource. This statement is valid for every resource and it can be
derived also through rule 4a that is one rule that was excluded because trivial.
Rule 8 could make rule 11 fire. We exclude the case that there is a superclass of
rdfs:Resource because we assume that the schema may not be redefined, but it
could be that there is a subclass of it. In this case we will materialize a statement
that says that something is a subclass of rdfs:Resource. This statement cannot
be used for any further derivation, therefore the cycle ends with it.

Rule 12 outputs a triple of the form s rdfs:subPropertyOf rdfs:member. This
could make rules 5 and 7 to fire. In both cases the output would be a triple that
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cannot be used anymore. The same case is with rule 13. Rules 9 and 11 could fire
but they would output either triples of the form s rdfs:subClassOf rdfs:Literal
or s rdfs:type rdfs:Literal (the correctness of this last one is debatable since we
are assuming that a resource is a Literal). Anyway in both cases these triples
will not lead to any derivation.

The most important consideration is that these last rules cannot generates
a derivation that can make these rules firing again. In other words there is no
main cycle in the rules execution. This consideration is important because we
it means do not need to relaunch the same job more than once (except in the
case the rule is recursive with itself). After we have applied rules 8, 12 and
13 we have reached a fixed point in our closure computation, because even we
can derive some statements, those will not lead to any new derivation. In case
we need to compute a complete RDFS closure, we can further process these
last 3 rules, deriving the last statements and apply the trivial rules that we
have excluded at the beginning of our discussion. This last part can be easily
implemented, and therefore we will exclude it from our discussion.

The only loops are the ones between the rules themselves. For example, if
we want to apply rule 11, we need to apply it repetitively until we cannot derive
anything anymore. Only after it we can safetly continue with our process. There
are only 4 rules (rule 2, 3, 8, 12 and 13) that are not recursive. These inner loops
are problematic because the numbers of repeats depends on the input data and
we want to reduce the number of jobs to the minimum necessary. We solve this
problem by loading some schema triples in memory.

5.3.2 Loading the schema triples in memory

We exploit the fact that the number of schema triples is much lower than the
data triples and that all the joins we do are between a big subset containing
the instance triples and a much smaller one containing the schema triples. For
our rules we need four subsets of the schema triples. The first is the one that
defines the domain of properties. This subset is used in rule 2. The second is
the subset that defines the range of the properties. This is used in rule 3. The
third is the one that defines the subproperty relation and it is needed in rules 5
and 7. The fourth and last is the set with the subclass relations used for rules
9 and 11.

Since these four datasets are small we can store them in memory, and instead
of doing the join using a single job as we did before we check if there is a match
between the input triples with the triples that are kept in memory. For example
if we want to apply the rule 9 we keep in memory all the triples that regard the
subclass relations and, for every triple of the form a rdf:type B, we check if the
triple’s object matches with one or more of the triples we keep in memory. If it
does then we derive a new statement.

We report a brief example to explain it better. Consider the set of input
triples:

a1 rdf:type A .
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b1 rdf:type B .
A rdfs:subclassof B .
B rdfs:subclassof C .
C rdfs:subclassof D .

The nodes load the “subclass” triples in a in-memory hash table with the
subject of the triples as key and the object as value. Following the example this
hash-map will contain the entries:

key value
A B
B C
C D

When the mapper receives in input the triple a rdf:type A it checks whether
there is a key equals to the triple’s object in the hash table. In this case the
mapper succeed and the mapper fetches the value associated with A. This value
is B and the mapper outputs the new triple a rdf:type B.

The advantage of keeping the schema triples in memory is that we do not
need to launch the job more than one time. In our previous approach we needed
to launch the same job again and again until we reach a fixed point. If we keep
the schema triples in memory we can check if there are matches in a recursive
way. For example if we take rule 9 the output produced by applying the rule
can be further used as input to check whether it could lead to a new derivation
with the schema in memory. In this way we do not need to relaunch another
job.

After this last consideration we eliminate also the inner loops and our rea-
soning process becomes a linear sequence of jobs.

In this implementation the join is done during the map phase. The reducers
simply filter the derived triples against the input so that we avoid to write
in output the same triple more than one time. The eight rules (rule 8 is not
considered in this version) are implemented in two Hadoop jobs. The first job
executes the two transitivity rules. The second applies all the other rules. In
the next two subsections we describe these two jobs more in detail.

5.3.3 First job - apply transitivity rules

First we apply rules 5 and 11. These rules exploit the transitivity property of
the subclass and subproperty relations making explicit every subproperty and
subclass statement. The algorithm is reported in Algorithm 5.

The mapper checks if the triple in input matches with the schema. In case
it does, it simply emits the new derived triple, setting it as the tuple’s key, and
setting true as value. It also outputs the input triple, with the only difference
that it sets the value as false.

The reducer code is very simple. It checks whether the triples in input are
derived or not. It does that iterating over the values of the tuples. If there is
a value set to false it means that the triple was present in input. In that case
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Algorithm 5 RDFS reasoner: second version first job

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : t r i p l e
i f value . p r e d i c a t e = r d f s : subClassOf then

o b j e c t s = subc las s schema . r e c u r s i v e g e t ( va lue . ob j e c t )
for ob j e c t in o b j e c t s

output ( t r i p l e ( va lue . sub jec t , r d f s : subClassOf , ob j e c t ) , t rue )

i f value . p r e d i c a t e = r d f s : subPropertyOf then
s u p e r o b j e c t s = subprop schema . r e c u r s i v e g e t ( va lue . ob j e c t )
for ( ob j e c t in s u p e r o b j e c t s )

output ( t r i p l e ( va lue . sub jec t , r d f s : subPropertyOf , ob j e c t ) , t rue )
output ( value , f a l s e )

reduce ( key , iterator va lue s ) :
for value in va lue s

i f not value then
exit

output ( nu l l , key )

the triple is not outputted. Otherwise it is outputted only once. The reducer
assures us we derive only unique triples.

5.3.4 Second job

The second job implements the remaining rules. In Hadoop there is a special
mapper called ChainMapper that we use to chain some mappers one after the
other. The output of the previous mapper becomes the input of the following,
and so on until the last mapper outputs the data to the reducers.

We define 3 different mappers. The first implements rule 7. It loads in
memory the sub-property triples and it checks whether the predicate of the
input triples is contained in the schema. This rule is the first executed in the
chain. The output of this mapper goes to the second mapper that encodes rules
2 and 3. It loads in two different data structures the schema triples that concern
the domain and range of properties. These two rules are grouped together in
one mapper because they are independent from each others and therefore they
can be applied at the same time. To notice is that the choice of putting first
the mapper that implements rule 7 before this last one is not casual but due to
the fact that the output of rule 7 can be used by rules 2 and 3. In this way the
output of rule 7 is checked in the second mapper ensuring we do not miss any
new derivation.
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The last mapper contains the implementation of rules 9, 11, 12 and 13.
These four rules are all grouped in one mapper because rules 9 and 11 use the
same memory data structure while rules 12 and 13 simply needs triples that
either are in input or just outputted from the previous rules. The algorithm is
reported in Algorithm 6.

The mapper first checks if the input triple meets certain conditions and
when it does, it checks recursively if there is a match with the memory data
structure. The triple produced is then forwarded to the reducer that will filter
out the duplicates.

This implementation was tested on the input dataset but there was a main
problem that concerned the number of duplicates generated during the map
phase. In one of the tests the number of duplicates grew so much until it
consumed all the space offered by our Hadoop cluster. The reason stands on
the fact that we process triple by triple even if they both could lead to the same
derivation. Let’s take an example. There are these 6 triples:

a rdf:type C
a rdf:type D
C rdfs:subclass E
D rdfs:subclass E
E rdfs:subclass F
F rdfs:subclass G

The mappers will load in memory the last 4 triples. When the mapper
receives the first triple it will derive that a is a type of E,F, G. When it receives
the second triple it will also derive the same 4 triples. If there are long chains of
subclass triples there will be an explosion of duplicated triples, and though all
of them will be later correctly filtered by the reducer, they must be first locally
stored and later sent to the reducer.

The third and final implementation faces this last problem and proposes a
solution that turns out being a much more performing algorithm than the ones
presented so far.

5.4 Third and final implementation

The previous implementation generated too many duplicates and resulted in
being unfeasible. Here we present an improved and final version of the algorithm
that was successfully implemented and used to evaluate the performances of our
approach. First we have moved the join’s execution from the map to the reduce
phase. This choice can generate some duplicates but allows us to reduce the
number of duplicates. We have also slightly rearranged the rule’s execution
order in five different jobs, but still in a way that we do not need to relaunch
the same job more than once.

The first job executes rules 5 and 7. The second one executes rules 2 and
3. The thirds job cleans up some duplicates that could have been generated in
the previous jobs and the fourth applies rules 8, 9, 11, 12 and 13. The fifth and
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Algorithm 6 RDFS reasoner: second version second job

/∗∗∗∗ CODE FIRST MAPPER ∗∗∗∗/
map( key , va lue ) :

s u p e r p r o p e r t i e s = subprop schema . r e c u r s i v e g e t ( va lue . p r e d i c a t e )
for property in s u p e r p r o p e r t i e s

output . c o l l e c t ( t r i p l e ( va lue . sub ject , property , va lue . ob j e c t ) )
output ( value , f a l s e )

/∗∗∗∗ CODE SECOND MAPPER ∗∗∗∗/
map( key , va lue ) {

i f ( domain schema tr ip l e s . conta in s ( va lue . p r e d i c a t e ) )
domains = domain schema . get ( va lue s . p r e d i c a t e )
for domain in domains

output . c o l l e c t ( t r i p l e ( va lue . sub ject , rd f : type , domain ) , t rue )
i f ( r a n g e s c h e m a t r i p l e s . conta in s ( va lue . p r e d i c a t e ) )

ranges = range schema . get ( va lue s . p r e d i c a t e )
for range in ranges

output . c o l l e c t ( t r i p l e ( va lue . object , rd f : type , range ) , t rue )
output ( value , f a l s e )

/∗∗∗∗ CODE THIRD MAPPER ∗∗∗∗/
map( key , va lue ) {

i f t r i p l e . p r e d i c a t e = r d f s : subClassOf then
s u p e r c l a s s e s = subc las s schema . r e c u r s i v e g e t ( va lue . ob j e c t )
for c l a s s in s u p e r c l a s s e s

output . c o l l e c t (
t r i p l e ( va lue . sub ject , r d f s : subClassOf , c l a s s ) , t rue )

i f t r i p l e . p r e d i c a t e = rd f : type then
s u p e r c l a s s e s = subc las s schema . r e c u r s i v e g e t ( va lue . ob j e c t )
for c l a s s in s u p e r c l a s s e s

output . c o l l e c t (
t r i p l e ( va lue . sub ject , rd f : type , c l a s s ) , t rue )

i f c l a s s = r d f s : ContainerMembershipProperty then
output . c o l l e c t (
t r i p l e ( va lue . sub ject , r d f s : subPropertyOf , r d f s : member ) , t rue )

i f c l a s s = r d f s : Datatype then
output . c o l l e c t (

t r i p l e ( va lue . sub ject , r d f s : subClassOf , r d f s : L i t e r a l ) , t rue )
//Check s p e c i a l r u l e s a l s o on the input v a l u e s

i f c l a s s = r d f s : ContainerMembershipProperty then
output . c o l l e c t (

t r i p l e ( va lue . sub ject , r d f s : subPropertyOf , r d f s : member ) , t rue )
i f c l a s s = r d f s : Datatype then

output . c o l l e c t (
t r i p l e ( va lue . sub ject , r d f s : subClassOf , r d f s : L i t e r a l ) , t rue )

output . c o l l e c t ( value , f a l s e )
/∗∗∗∗ REDUCER ∗∗∗∗/
reduce ( key , iterator va lue s ) :

for value in va lue s
i f not value then

exit
output ( nu l l , key )
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last job processes the output of the rules 8, 12 and 13 to derive the last bit of
information. This job derives information that could be considered trivial, like
being subclass of Resource, therefore, in case the user does not need to have a
complete reasoning, it can be left out.

In Figure 5.2 we report a sketch of the overall jobs execution. We see from
the picture that first the data is encoded and then the five jobs are executed
right after it. The output of the jobs is added to the input so that every jobs
reads in input the original data plus everything that was already derived. In
the next subsections we will first discuss more in detail about the problem of
the duplicates, explaining why we moved the join execution from the map to
the reduce, and then we will continue describing all the single jobs.

Figure 5.2: Execution of the RDFS reasoner
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5.4.1 Generation of duplicates

The problem of generating an high number of duplicates which the previous
implementation suffered of can be solved by grouping first the triples that can
potentially generate the same output and then applying the rules only one time
per group. For this reason we use first the map phase to group the triples and
then we execute the join on the reducer phase.

We must group the triples in a particular way. Every derived statement
contains a part that comes from the input triples and another part that comes
from the schema. To explain better this concept let’s take a simple rule, rule 7,
as example. In this rule the subject and the object of the derived triples come
from the input while the predicate comes from the schema.

In rule 7 the duplicated triples are derived from the input triples which share
the same subject and object and have different predicates that lead to the same
derivation. If we process these triples singularly, as we did before, they both
derive the same statements because they are not aware of the existence of the
others. If we want to avoid the duplicates we need to first group these triples
together and then process them only one time.

If we group the triples using the part of them that is also used in the deriva-
tion and then we execute the join only one time per group, we will never produce
some derivatives, because every group has a different key.

During the map phase we set the parts of the input triples that are also
used in the derived triples as the tuple keys and the parts that should match
the schema as values. For example for rule 7 we will put as key the subject
and the object of the input triple, for rule 5 only the subject, and so on. If we
add more elements in the key (for example putting also the predicate in case of
rule 7) this condition won’t hold anymore. If we put less elements we will still
avoid duplicates but our groups will be bigger introducing some load balancing
problems.

During the reduce phase we iterate over the possible matching points and we
calculate the derivation set they produce, filtering in memory eventual dupli-
cates. After, we simply output the derived statements using the fixed part that
comes from the group’s key and the elements derived from the schema triples.

With this procedure we do eliminate the duplicates between the derived
triples but when we do not delete the duplicates between the input triples and
the derived ones, unless we forward all the input triples to the reducers. That
means that after the reasoning jobs we need to launch another job only to clean
up these duplicates.

5.4.2 First job: subproperty inheritance

The first job implements rule 7 and 5.
The mapper receives in input one triple at the time. If it is a subproperty

triple we can apply rule 5 and check whether the object matches in the schema.
When it does the mapper will output a tuple settings as key a special flag to
identify that this triple should be processed by rule 5 plus the triple’s subject.
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As value the mapper sets the object of the triple.
Otherwise, if it is a generic triple, the mapper checks whether the predicate

matches with the schema. If it does it outputs a tuple setting as key a different
flag plus the triple’s subject and object. The mapper sets as value the triple’s
predicate.

The framework will group the tuples by the key and the reducers will process
each of these group one by one. The first thing a reducer does is to check the
flag. According to the flag it processes the group following a specific logic (that
can be rule 5 execution or rule 7 execution).

In both cases the procedure is similar. First we collect the values storing
them on a hashset. This operation eliminates eventual duplicates in case the
input contains duplicated triples. After, for each value, the reducer recursively
calculates all the superproperties and it stores them in a hash-set so that we
also eliminate the duplicates within the derivation output. After these two
operations the reducer continues emitting the new triples: in case we apply the
rule 7 we extract the subject and the object from the key and derive the new
triples using the super-properties as predicate. In case we apply the rule 5 we
will use the key as subject and the super-properties as object (the predicate will
be rdfs:subPropertyOf ).

The algorithm is reported in Algorithm 7.

5.4.3 Second job: domain and range of properties

This job is similar to the previous. Here we apply rules 2 and 3. The mapper
checks in a similar way than before whether the predicate has a domain or a
range associated. Here we do not divide the two rules in two groups setting a
flag in the key but instead we process them as they are a unique rule. We do
this because otherwise the output of one rule can generates duplicates with the
other ones. Consider as example the fragment:

a p b .
c p2 a .
p rdfs:domain Thing .
p2 rdfs:range Thing .

If we apply rules 2 and 3 separately they will both derive that a is type Thing.
To avoid that we need to group the triples together. In case the predicate has a
domain we output a tuple that has as key the triple’s subject and as value the
predicate plus a special flag. Otherwise, if the predicate has a range, we output
the triple’s object as key and as value the predicate with another flag. The flag
in the value is needed because we need to know which schema we should match
the predicate against. The derivation output is put in a hash-set so that we
eliminates the duplicates and we output the triples using the key as subject and
the derived output as object.

The algorithm is reported in Algorithm 8.
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Algorithm 7 RDFS reasoning: third version, first job

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : t r i p l e

i f ( va lue . p r e d i c a t e = r d f s : subPropertyOf
and subprop schema t r ip l e s . conta in s ( va lue . ob j e c t ) ) then

//We can app ly r u l e 5
key = ’0 ’ + value . s u b j e c t
output ( key , va lue . ob j e c t )

i f ( subprop schema t r ip l e s . conta in s ( va lue . p r e d i c a t e ) then
//We can app ly r u l e 7
key = ’1 ’ + value . s u b j e c t + value . ob j e c t
output ( key , va lue . p r e d i c a t e )

reduce ( key , iterator va lue s ) :
// valuesToMatch i s a h a s h s e t
for ( va lue in va lue s )

valuesToMatch . add ( va lue s )

// S u p e r p r o p e r t i e s i s a h a s h s e t
for ( valueToMatch in valuesToMatch )

s u p e r p r o p e r t i e s . add ( s c h e m a t r i p l e s . r e c u r s i v e g e t ( valueToMatch ) )

i f ( key [ 0 ] == 0) then
// r u l e 5
for ( superproperty in s u p e r p r o p e r t i e s )

i f (not valuesToMatch . conta in ( superproperty ) then
output ( nu l l , t r i p l e ( key . sub jec t , r d f s : subPropertyOf , superproperty ) )

e l s e
// r u l e 7
for ( superproperty in s u p e r p r o p e r t i e s )

i f ( ! valuesToMatch . conta in ( superproperty ) then
output . c o l l e c t ( nu l l , t r i p l e ( key . sub ject , superproperty , key . ob j e c t ) )
newTriple . p r e d i c a t e = superproperty
output ( nu l l , newTriple )
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Algorithm 8 RDFS reasoning: third version, second job

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : t r i p l e
i f ( domain schema . conta in s ( va lue . p r e d i c a t e ) ) then

newValue . f l a g = 0
newValue . r e s ou r c e = value . p r e d i c a t e
output . c o l l e c t ( va lue . sub ject , newValue )

i f ( range schema . conta in s ( va lue . p r e d i c a t e ) ) then
newValue . f l a g = 1
newValue . r e s ou r c e = value . p r e d i c a t e
output . c o l l e c t ( va lue . ob ject , newValue )

reduce ( key , iterator va lue s ) :
for ( va lue in va lue s ) do
i f value . f l a g = 0 then

//Check in domain
types . add ( domain schema . get ( va lue . r e s ou r c e ) )

e l s e
types . add ( range schema . get ( va lue . r e s ou r c e ) )

for ( type in types ) do
output . c o l l e c t ( nu l l ,

t r i p l e ( key . re source , rd f : type , type ) )
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Algorithm 9 RDFS reasoning: third version, third job

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : t r i p l e
output ( value , key . i sDer ived )

reduce ( key , iterator va lue s ) :
for ( va lue in va lue s )

i f ( va lue = f a l s e ) then
exit

output . c o l l e c t ( nu l l , key )

5.4.4 Third job: cleaning up duplicates

The two jobs before can generate some duplicates against the input. With this
job we clean up the derivation saving only unique derived triples. The structure
of this job is simple. The mapper reads the triples and set them as the key of
the intermediate tuples. As value it set true if the triple was derived or false
in case it was original. For every triple we know whether it is derived or not
because when we store them on disk we flag them in case they are from the
input or derived.

The reducer simply iterates over the values and it returns the triple only if
it does not find any “false” between the values, because that would mean that
the triple was also in input. The algorithm is reported in Algorithm 9.

5.4.5 Fourth job: execute subclasses rules

The last job executes rules 8, 9, 11, 12 and 13. In this job the mapper is slightly
different than the jobs before. In the previous cases the mappers check whether
the input triples match with the schema before forwarding them to the reducers.
This operation limitates the number of triples that are sent to the reducer but
leaves the door open for duplication against the input.

Here we do not check the input triple but instead we forward everything to
the reducer. In doing so we can also eliminate the duplicates against the input
and consequently avoid to launch a second job that is cleaning up the duplicates.
The disadvantage of this choice is that the reducer has to process all the data
in input, even if the triple does not match with the schema. However this job
works only with a subset of the data (“type” and “subclass” triples) and during
our tests we noticed that it is faster if we let the reducer work a bit more than
lightning this job and execute another job to filter the output.

For the rest the structure is similar than in the jobs before. We group the
triples and then we proceeds to the derivation during the reduce phase. The re-
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ducers load in memory the subclass triples and the sub-property of rdfs:member.
The last triples are needed for the derivation of rule 12.

The rules 8, 12 and 13 do not require a join between two triples. What we
do is simply checking if in the input or in the derived hashset we find a triple
that correspond in one of the antecedent of the rules. If we find one, we check
first whether the output we would derive is already present in the input (rule
12 using the rdfs:member sub-property triples) or if we would derive the same
through rule 11 (we do this for rule 8 and 13, checking the subclass schema). In
case all the conditions hold we can derive the new triple being sure that it will
not be a duplicate with the input.

The algorithm is reported in Algorithm 10.

5.4.6 Fifth job: further process output special rules

As described in section 5.3.1 the rules 8, 12 and 13 can generate some output
can could lead to another derivation. More in particular, with rule 8 we could
derive that some classes are subclasses or rdfs:Resource. With rule 12 we can
infer that some properties are sub-properties of rdfs:member and some other
triples could inherit this relation on them. Also with rule 13 we can derive that
some classes are subclasses of rdfs:Literal. These special cases are not common
in the data that we crawled in the web and it is debatable if such triples are
useful (like being a subclass of Literal) or not. We have implemented a job that
derives this last bit of information, but since these rules are quite uncommon,
the job starts only if the previous does derive some of them. In case the user is
not interesting in this “special” derivation and wants to save time, this job can
be skipped.

The structure of the job is different than the previous. To explain it let’s
take as example the following case. We could have these triples in input:

A rdf:type rdfs:ContainerMembershipProperty .
B rdfs:subPropertyOf A .

If we apply only rule 12 we will derive only that A is a sub property of
rdfs:member. However, after we have derived it, rule 5 can also fire stating that
also B is a sub property of rdfs:member.

In order to derive also this second statement the mappers first check whether
the sub-property triple in input has rdfs:member as object or if it has as object
a property that is sub-property of rdfs:member. In both cases they will forward
the triple to the reducers setting as key the subject and as value the object. The
reducers will check the values searching if they find rdfs:member between them.
In case they find it, they will not output the statement because in the input
it is already existing a statement like key rdfs:subPropertyOf rdfs:member and
therefore we should not write it again. If it is not present we should proceeds
writing the conclusion since we are in the case in which a sub-property triple’s
object matches a rdfs:member triple subject and the transitivity rule (rule 5)
should be applied. The other rules works in a similar way. This job does
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Algorithm 10 RDFS reasoning: third version, fourth job

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : t r i p l e
i f ( va lue . p r e d i c a t e = rd f : type then

key . f l a g = 0
key . va lue = value . s u b j e c t
output ( key , va lue . ob j e c t )

i f ( va lue . p r e d i c a t e = r d f s : subClassOf then
key . f l a g = 1
key . va lue = value . s u b j e c t
output ( key , va lue . ob j e c t )

reduce ( key , iterator va lue s ) :
for ( va lue in va lue s ) do

inValues . add ( value )
for ( va lue in inValues ) do

s u p e r c l a s s e s . add ( subc las s schema . r e c u r s i v e g e t ( va lue ) )

for ( s u p e r c l a s s in s u p e r c l a s s e s ) do
i f ( ! va lue s . conta in s ( s u p e r c l a s s ) then

i f ( key . f l a g = 0) then // r u l e 9
output . c o l l e c t (

nu l l , t r i p l e ( key . sub jec t , rd f : type , s u p e r c l a s s ) )
e l s e // r u l e 11

output . c o l l e c t (
nu l l , t r i p l e ( key . sub jec t , r d f s : subClassOf , s u p e r c l a s s ) )

//Check s p e c i a l r u l e s
i f ( ( s u p e r c l a s s . conta in s ( r d f s : Class )

or inValues . conta in s ( r d f s : Class ) )
and not subc las s schema . get ( key . s u b j e c t ) . conta in s ( r d f s : Resource ) )

then // r u l e 8
output . c o l l e c t (

nu l l , t r i p l e ( key . sub jec t , r d f s : subClassOf , r d f s : Resource )
i f ( ( s u p e r c l a s s . conta in s ( r d f s : ContainerMembershipProperty )

or inValues . conta in s ( r d f s : ContainerMembershipProperty ) )
and not subprop member schema . conta in s ( key . s ub j e c t ) )

then // r u l e 12
output . c o l l e c t (

nu l l , t r i p l e ( key . sub jec t , r d f s : subPropertyOf , r d f s : member)
i f ( ( s u p e r c l a s s . conta in s ( r d f s : Datatype )

or inValues . conta in s ( r d f s : Dataype ) )
and not subc las s schema . get ( key . s u b j e c t ) . conta in s ( r d f s : L i t e r a l ) )

then // r u l e 13
output . c o l l e c t (

nu l l , t r i p l e ( key . sub jec t , r d f s : subClassOf , r d f s : L i t e r a l )
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not generate any duplicate, because we forward all the relevant input triples,
therefore there is no need to run another cleaning up job.

The algorithm is reported in Algorithm 11.
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Algorithm 11 RDFS reasoning: third version, fifth job

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : t r i p l e

i f value . p r e d i c a t e = r d f s : subPropertyOf then
i f value . ob j e c t = r d f s : member or

memberProperties . conta in s ( va lue . ob j e c t ) then
output . c o l l e c t ( ’ 1 ’ + value . sub ject , va lue . ob j e c t )

i f value . p r e d i c a t e = r d f s : subClassOf then
i f value . ob j e c t = r d f s : L i t e r a l or

l i t e r a l S u b c l a s s e s . conta in s ( va lue . ob j e c t ) then
output . c o l l e c t ( ’ 2 ’ + value . sub jec t , va lue . ob j e c t )

e l s e i f value . ob j e c t = r d f s : Resource or
r e s o u r c e S u b c l a s s e s . conta in s ( va lue . ob j e c t ) then

output . c o l l e c t ( ’ 3 ’ + value . sub jec t , va lue . ob j e c t )

i f memberProperties . conta in s ( va lue . p r e d i c a t e ) or
value . p r e d i c a t e = r d f s : member then

output . c o l l e c t ( ’ 4 ’ + value . sub jec t , va lue . ob j e c t )

reduce ( key , iterator va lue s ) :
for ( va lue in va lue s )

i f value = r d f s : member or
value = r d f s : L i t e r a l or
value = r d f s : Resource then

exit

switch ( key [ 0 ] )
case ’ 1 ’ :

output . c o l l e c t ( nu l l ,
t r i p l e ( key . re source , r d f s : subPropertyOf , r d f s : member)

case ’ 2 ’ :
output . c o l l e c t ( nu l l ,

t r i p l e ( key . re source , r d f s : subClassOf , r d f s : L i t e r a l )
case ’ 3 ’ :

output . c o l l e c t ( nu l l ,
t r i p l e ( key . re source , r d f s : subClassOf , r d f s : Resource )

case ’ 3 ’ :
output . c o l l e c t ( nu l l ,

t r i p l e ( key . re source , r d f s : member , key . r e sourc e2 )



Chapter 6

OWL reasoning as
MapReduce functions

In this chapter we present an initial algorithm for OWL reasoning. We imple-
ment OWL reasoning using the rules proposed by the ter Horst fragment. These
rules are more complicated to implement than RDFS ones because:

• some rules require a join between three or even four different triples. See
for example rule 14b or 16;

• some rules require a join that is between two sets that both have many
triples. That means we cannot load one side in memory as we did for the
RDFS schema triples;

• the rules depend on each others and there is no rule ordering without a
loop.

Because of this we cannot apply the optimizations we introduced for the
RDFS reasoning and we must come up with other optimizations in order to
present an efficient algorithm. The algorithm presented is at a primitive state,
with only few optimizations introduced.

This chapter is organized as follows: first, in section 6.1, we will provide a
complete overview of the algorithm, while later, in the following sections, we will
explain more in detail every single part of it. This algorithm was implemented
and tested on two small datasets. The performances are reported in section
7.2.3.

6.1 Overview

The rules proposed by the ter Horst fragment are reported in Table 2.2.
The rules are grouped in eight blocks, depending if they use the same schema

triples, or in case they return a similar output.

55
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Some of the jobs contained in the eight blocks are executed more than one
time, because one single pass is not enough to compute a complete closure.
Other job are executed only one time, but they produce duplicates and we need
to launch an additional job to filter them out.

The rules execution consists in a main loop where the blocks are executed
at least two times. We repeat the loop untill all the jobs do not derive any new
triple. At that point we can be sure that we have computed a complete closure
and we can stop the execution. Figure 6.1 reports a graphical depiction of the
algorithm. From the figure we can see how the loop of eight blocks is executed
until we stop deriving new statements.

In the next sections we are going to describe more in details each of these
blocks. We will report the algorithms in pseudo code, excepts of the algorithm
who deletes the duplicates because this algorithm is the same used during the
RDFS reasoning and it was already presented in section 5.4.4.

6.2 First block: properties inheritance

The first rules we execute are rules 1, 2, 3, 8a and 8b. These rules concern the
derivation of certain conclusions based on the properties of the predicates. For
example if a predicate is defined as symmetric we can rewrite the triples with
that predicate exchanging the subject and the object. Rules 1, 2 and 3 are not
recursive. It means that their output cannot be reused as the rules input. Rules
8a and 8b are recursive but we can store the schema triples (p inverseOf q) in
memory and recursively derive all the statements with one pass.

The algorithm works as follow. First the mappers load in memory the schema
triples that are needed for the rules execution. These triples define the prop-
erties inverses and the list of the functional, inverse functional and symmetric
properties. The mappers check if the input triples match with the schema and
in case they do they are forwarded to the reducers.

The map algorithm outputs some tuples that encode the triples so that they
limitate the number of derived duplicates. The algorithm attaches a flag to
the key depending on which rule can be applied. This operation is done in a
similar way than for the RDFS reasoning and aims to avoid the generation of
duplicates.

The reducer algorithm starts first to load the values in a memory data struc-
ture, in order to remove eventual duplicates. After, it continues deriving the
new statements according to the specific rule logic, using the information in the
key and in the schema triples.

During this job we also process the triples that can fire rule 4. The purpose
is to split the triples that can potentially fire rule 4 from the others. To do so the
map algorithm loads in memory the schema triples for the transitive properties
and it saves the triples that match against this schema in a special folder. Rule
4 will be executed in the next block but it requires we launch the job more
times, therefore, if we filter the input triples at this stage, the next block will be
much faster because it does not have to read all the input but only the subset



6.2. FIRST BLOCK: PROPERTIES INHERITANCE 57

Figure 6.1: Overview of the OWL reasoner
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Algorithm 12 OWL: first block, encode rules 1, 2, 3, 8a and 8b

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : input t r i p l e
i f ( f u n c t i o n a l p r o p . conta in s ( va lue . p r e d i c a t e ) then

key = ’0 ’ + value . s u b j e c t + value . p r e d i c a t e
output . c o l l e c t ( key , va lue . ob j e c t )

i f ( i n v e r s e f u n c t i o n a l p r o p . conta in s ( va lue . p r e d i c a t e ) then
key = ’0 ’ + value . ob j e c t + value . p r e d i c a t e
output . c o l l e c t ( key , va lue . s u b j e c t )

i f ( symmetr i c p rope r t i e s . conta in s ( va lue . p r e d i c a t e ) then
key = ’1 ’ + value . s u b j e c t + value . ob j e c t
output . c o l l e c t ( key , va lue . p r e d i c a t e )

i f ( i n v e r s e o f p r o p e r t i e s . conta in s ( va lue . p r e d i c a t e ) then
key = ’2 ’ + value . s u b j e c t + value . ob j e c t
output . c o l l e c t ( key , va lue . p r e d i c a t e )

// This doesn ’ t encode the r u l e 4 . I t i s used only to s t o r e the
// t r i p l e s in another l o c a t i o n f o r the f o l l o w i n g b l o c k
i f ( t r a n s i t i v e p r o p e r t i e s . conta in s ( va lue . p r e d i c a t e ) then

key = ’3 ’ + value . s u b j e c t + value . ob j e c t
output . c o l l e c t ( key , va lue . p r e d i c a t e )

reduce ( key , iterator va lue s ) :
switch ( key [ 0 ] )

case 0 : // Rule 1 and 2
va lue s = va lues . unique
for ( va lue in va lue s )
for ( va lue2 in va lue s )

output . c o l l e c t ( nu l l , t r i p l e ( value , owl : sameAs , va lue s )
case 1 : // Rule 3

for ( va lue in va lue s )
output . c o l l e c t ( nu l l , t r i p l e ( key . ob ject , value , key . s u b j e c t )

case 2 : // Rule 8a ,8 b
for ( va lue in va lue s )

r e source1 = key . s u b j e c t
r e source2 = key . ob j e c t
p = value
begin :
i f ( p inv = i n v e r s e o f . get (p) and output . n o t c o l l e c t e d (p ) ) then

output . c o l l e c t ( nu l l , t r i p l e ( resource2 , p inv , r e sour ce1 )
swap ( resource1 , r e sourc e2 )
p= p inv
goto begin

case 3 :
// Just forwards the t r i p l e s f o r the next b l o c k
// ( r u l e 4) in a s p e c i a l d i r e c t o r y
for ( va lue in va lue s )

output . c o l l e c t ( nu l l , t r i p l e ( key . sub ject , value , key . ob j e c t ) )
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we have prepared this time.
After we have executed this job we do not execute a job to clean up the

duplicates because even if it can produce some duplicates they are supposed to
be rare and they do not justify the execution of a job that needs to parse all the
input to clean few duplicates. A cleaning job will be executed at the end of the
next block considering also the output of this block. The algorithm is presented
in Algorithm 12.

6.3 Second block: transitive properties

The second blocks executes only rule 4. The join is done in a “naive” way
because we are unable to load one of the two parts in memory and do the join
on the fly.

The rule is encoded so that the join is done only between triples that share
one term. Since there can be chains of triples with transitive properties, we need
to launch this job more times, till we have derived everything out of it. We do
not use as input the all data set but instead only the content of the special
folder that was prepared during the previous job. This folder contains only the
triples that match with the schema, that are a small subset of the data.

The mapper outputs as key the URIs that can be used as a match point,
that are either the subject or object of the input triples. As value the mapper
sets the other resource, adding also a flag that indicates the position of the two
resources within the triple.

The reducer iterates over the values and loads them in two different sets,
depending on their position within the triple. After, if both sets have some
elements, the reducer proceeds returning all the combinations between the two
in-memory sets.

This operation is repeated until the amount of derived triples does not in-
crease anymore. At this point we launch a cleaning job that filters out all the
duplicates that were generated during the previous executions. The algorithm
is reported in Algorithm 13.

6.4 Third block: sameAs statements

The third job executes rule 6 and 7. This job is similar to the previous one and
it also needs to be repeated more times since there can be chains of “sameAs”
triples that require the job being repeated. This job generates a considerable
amount of duplicates, because everytime it is launched it will derive at least the
same amount of information that was derived before. For this reason we need
to launch a cleaning job right after it.

The two rules are both executed in a “naive” way. The map returns both
the subject and the object as the tuple’s key. The reducer simply loads in
memory all the values and returns all the possible sameAs statements between
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Algorithm 13 OWL: second block, encode rule 4

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : input t r i p l e

i f ( t r a n s i t i v e p r o p e r t i e s . conta in s ( va lue . p r e d i c a t e ) and
value . s u b j e c t != value . ob j e c t then

key = value . p r e d i c a t e + value . ob j e c t
output . c o l l e c t ( key , ’0 ’ + value . s u b j e c t )
key = value . p r e d i c a t e + value . s u b j e c t
output . c o l l e c t ( key , ’ 1 ’ + value . ob j e c t )

reduce ( key , iterator va lue s ) :
va lue s = va lues . unique
for ( va lue in va lue s )

i f ( va lue [ 0 ] == 0) then
j o i n l e f t . add ( value . r e s ou r c e )

e l s e // v a l u e [ 0 ] = 1
j o i n r i g h t . add ( value . r e s ou r c e )

for ( l e f t e l e m e n t in j o i n l e f t )
for ( r i gh t e l em ent in j o i n r i g h t )

output . c o l l e c t ( nu l l ,
t r i p l e ( l e f t e l e m e n t , key , key . pred i cate , r i gh t e l em ent )



6.5. FOURTH BLOCK: EQUIVALENCE FROM SUBCLASS AND SUBPROPERTY STATEMENTS 61

Algorithm 14 OWL: third block, encode rules 6 and 7

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : input t r i p l e

output . c o l l e c t ( va lue . sub ject , va lue . ob j e c t )
ouput . c o l l e c t ( va lue . object , va lue . s u b j e c t )

reduce ( key , iterator va lue s ) :
va lue s = va lues . unique
for ( va lue in va lue s )

output . c o l l e c t ( nu l l , t r i p l e ( key , owl : sameAs , va lue )
for ( value2 in va lue s )

output . c o l l e c t ( nu l l , t r i p l e ( value , owl : sameAs , va lue2 )

the resource in the key and the values (this is the output of rule 6) and between
the elements in the values (this is the output of rule 7).

There are problems of scalability since we need to store all the triples in
memory. In case there is one very common resource we may not be able to store
them in memory, and therefore we are unable to proceed with the reasoning
task. So far we could not come up with an optimization to avoid this problem
and indeed these two rules revelead to be problematic during our tests so that
we needed to deactivate them.

The algorithm is reported in Algorithm 14.

6.5 Fourth block: equivalence from subclass and
subproperty statements

The fourth job executes rules 12c and 13c. These two rules are not recursive,
and this means we can execute this job only one time.

The job is relatively fast compared to the others, because it accepts in input
only schema triples that are either “subclass” or “subproperty” relations.

The two rules fire when there are two triples that have the same subject
and object in the opposite positions. If we want to group them together we
must encode the subject and the object in the key, but we need that two triples
with subjects in different positions objects are grouped together. What we do
is to write the subject and the object in the tuple’s key depending on their
number. If the subject has a number that is greater than the object it will be
the key as the sequence subject+object. In the opposite case the key will become
object+subject. In order to know what is the position of the first resource in the
key we set as value either 1 in the first case or 0 in the second case.

With this methodology in case there are two triples that have the object
equals to the other’s subject and viceversa, they will be encoded in two tuples



62 CHAPTER 6. OWL REASONING AS MAPREDUCE FUNCTIONS

Algorithm 15 OWL: fourth block, encode rules 12c and 13c

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : input t r i p l e

i f ( va lue . s u b j e c t < value . ob j e c t ) then
i f ( va lue . p r e d i c a t e == r d f s : subClassOf ) then

key = ’SC’ + value . s ub j e c t + value . ob j e c t
i f ( va lue . p r e d i c a t e == r d f s : subPropertyOf ) then

key = ’SP ’ + value . s u b j e c t + value . ob j e c t
output . c o l l e c t ( key , 0 )

e l s e
i f ( va lue . p r e d i c a t e == r d f s : subClassOf ) then

key = ’SC’ + value . ob j e c t + value . s ub j e c t
i f ( va lue . p r e d i c a t e == r d f s : subPropertyOf ) then

key = ’SP ’ + value . ob j e c t + value . s u b j e c t
output . c o l l e c t ( key , 1 )

reduce ( key , iterator va lue s ) :
va lue s = va lue s . unique
i f ( va lue s . conta in s (0 ) and va lue s . conta in s ( 1 ) ) then

i f ( key [ 0 ] = SC) // s u b c l a s s
output . c o l l e c t (

nu l l , t r i p l e ( key . resource1 , owl : equ iva l entC la s s , key . r e sourc e2 )
output . c o l l e c t (

nu l l , t r i p l e ( key . resource2 , owl : equ iva l entC la s s , key . r e sourc e1 )
e l s e // s u b p r o p e r t y

output . c o l l e c t (
nu l l , t r i p l e ( key . resource1 , owl : equ iva lentProperty , key . r e sourc e2 )

output . c o l l e c t (
nu l l , t r i p l e ( key . resource2 , owl : equ iva lentProperty , key . r e sourc e1 )
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with the same key but with two different values.
The reducer algorithm simply checks whether the tuples have different val-

ues. In case they have it outputs a new triple. The algorithm is reported in
Algorithm 15.

This job can generate some duplicates against the data in input, therefore
we must launch another job to clean up the duplicates.

6.6 Fifth block: derive from equivalence state-
ments

This job executes rules 9, 10, 12a, 12b, 13a and 13b. All these rules output
triples that are either about subclass or about subproperty relations.

Rules 12a, 12b, 13a and 13b have only one antecedent and their implemen-
tation is straightforward. The map algorithm outputs the subject as key and
the object as value. The reduce algorithm filters out the duplicates and returns
the corresponding derived triple.

Rules 9 and 10 require a join between the “type” triples and the “sameAs”
triples. The map algorithm outputs the intermediate tuples setting as key the
resource that could be matched. The reduce algorithm iterates over the val-
ues and stores the “sameAs” triples in a in-memory structure. As soon as it
encounters one triple that has as type either “owl:Class” or “owl:Property” it
derives a new triple for each of the elements in the in-memory data structure.
The algorithm sets a flag so that the next “sameAs” values are not stored but
instead used immediately for the new derivation and then discarded.

All the rules encoded are not recursive and therefore we do not need to
repeat the job. However the job produces some duplicates and therefore we
must run a cleaning job right after. The algorithm is reported in Algorithm 16.

6.7 Sixth block: same as inheritance

The sixth block encodes rule 11. This rule is problematic because it requires a
join between two datasets that have many elements. If we encode the join in
the naive way we will need to store both sets in memory but it would likely not
fit. Consider the example:

url1 rdf:type Link
url2 rdf:type Link
...
urln rdf:type Link
Link owl:sameAs URL

The “naive” way requires that we load all the values in memory because the
reducer has access to the values only through an iterator and it cannot scroll it
more than one time. Therefore we are obliged to store all the “type” values in
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Algorithm 16 OWL: fifth block, encode rules 9, 10, 12a, 12b, 13a, 13b

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : input t r i p l e

i f ( va lue . p r e d i c a t e = owl : eq u iva l e n tC la s s ) then
output . c o l l e c t ( va lue . sub ject , ’ 0 ’ + value . ob j e c t )

i f ( va lue . p r e d i c a t e = owl : equ iva l entProper ty ) then
output . c o l l e c t ( va lue . sub ject , ’ 1 ’ + value . ob j e c t )

i f ( va lue . p r e d i c a t e = rd f : type and value . ob j e c t = owl : Class ) then
output . c o l l e c t ( va lue . sub ject , ’ 2 ’ + value . ob j e c t )

i f ( va lue . p r e d i c a t e = rd f : type and value . ob j e c t = owl : Property ) then
output . c o l l e c t ( va lue . sub ject , ’ 3 ’ + value . ob j e c t )

i f ( va lue . p r e d i c a t e = owl : sameAs ) then
output . c o l l e c t ( va lue . sub ject , ’ 4 ’ + value . ob j e c t )

reduce ( key , iterator va lue s ) :
va lue s = va lues . unique
for ( va lue in va lue s )

i f ( va lue [ 0 ] = 0) // Rule 12a , 12 b
output . c o l l e c t ( nu l l , t r i p l e ( key ,

r d f s : subClassOf , va lue . r e s ou r c e )
output . c o l l e c t ( nu l l , t r i p l e ( va lue . re source ,

r d f s : subClassOf , key )
i f ( va lue [ 0 ] = 1) // Rule 13a , 13 b

output . c o l l e c t ( nu l l , t r i p l e ( key ,
r d f s : subPropertyOf , va lue . r e s ou r c e )

output . c o l l e c t ( nu l l , t r i p l e ( va lue . re source ,
r d f s : subPropertyOf , key )

i f ( va lue [ 0 ] = 2)
subClassFlag = true
//empty e lements cached
for ( sameResource in sameAsSet )

output . c o l l e c t ( nu l l , t r i p l e ( key ,
r d f s : subClassOf , sameResource )

i f ( va lue [ 0 ] = 3)
subPropertyFlag = true
//empty e lements cached
for ( sameResource in sameAsSet )

output . c o l l e c t ( nu l l , t r i p l e ( key ,
r d f s : subPropertyOf , sameResource )

i f ( va lue [ 0 ] = 4)
i f (not subClassFlag | | not subPropertyFlag )

sameAsSet . add ( value . r e s ou r c e )
e l s e i f ( subClassFlag ) // Rule 9

output . c o l l e c t ( nu l l , t r i p l e ( key , r d f s : subClassOf
value . r e s ou r c e )

e l s e // Rule 10
output . c o l l e c t ( nu l l , t r i p l e ( key , r d f s : subPropertyOf ,

va lue . r e s ou r c e )
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memory until we encounter one or more “sameAs” values. Obviously if there
are too many elements in the group (consider the example above) the algorithm
is impossible to execute.

To solve this problem we should put all the “sameAs” tuples at the beginning
of the iterator. The MapReduce programming model does not provide such
feature, but we can exploit the characteristics of the Hadoop framework to sort
the tuples in such a way that all the “sameAs” tuples appear as first in the list.

In the Hadoop framework, the intermediate tuples returned by the mappers
are first stored locally and then sent to the machines that execute the reduce
tasks. All the tuples with the same key should be sent to the same node because
they must be grouped together and processed by the reduce algorithm. Hadoop
uses the hash code of the tuple’s key to identify which node it should send the
tuple to. For example if there are 10 reducers tasks to execute, the mappers
calculates the hashcode of the tuple’s key, it divides it by 10 and according to
the module it sends the tuple to the correct node. In this way all the tuples
with the same key will end in the same node.

After one node has received all the tuples from the mappers it sorts them in
a list so that all the tuples with the same key are next to each others. Then it
calls the user-defined reduce function passing as argument the first key of the
list and an iterator over the values of the list of tuples. Every time that the user
calls the “iterator.next” function, the framework checks the next tuple in the
list, and in case it differs, it stops because that means that the group is finished
and a new group starts on the next record.

The framework gives the possibility to the user to overwrite three standard
functions: the first is the function that calculates the hash code, the second is
the function that sorts the tuples in the list and the last is the function that
checks whether the next key is the same than the previous when we call the
function “iterator.next”.

We rewrite these functions so that:

• during the map phase, we set as key the URI that should be matched in
the join plus a flag, ’S’ if the triple is sameAs or ’W’ if it is a generic one;

• we design the hash-code function as a function that calculates the hash-
code on the key without the last flag

• we design the function that sorts the tuple’s key as a function that sorts
the tuples considering the keys with the last flag. This function will always
put the “sameAs” triples before than others because ’S’ < ’W’

• we design the function that checks the next value on the list as a function
that compares the keys without considering the last flag.

Let’s consider an example to see what happens. We have these triples in
input:

a rdf:type Class
Class owl:sameAs AnotherClass
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The mapper will output the tuples:

...
<ClassW, 2rdf:typeClass>
<ClassS, 0AnotherClass>
...

The two tuples have different keys, therefore they can be partitioned in
two groups that will be processed by different nodes. However, we have set a
function that calculates the hash-code without considering the last character
and therefore they will be both partitioned into the same group.

After the reducer has sorted the tuples, the “sameAs” triples will always be
the first in the list because they share everything except the last character that
is either ’S’ or ’W’ (’S’ < ’W’). When in our reduce function we call the function
“iterator.next” the comparison will not consider the final byte of the key and it
will return the next tuple as equal, even if the two have different keys.

The purpose of this trick is to have the “sameAs” tuples at the beginning
of the list so that we can load them in memory. The reduce algorithm starts
scrolling the iterator and it stores only the “sameAs” values in memory. After,
it proceeds executing the join between all the values it has stored in memory
and each of the tuples it will fetch from the iterator. The flags on the tuple’s
values are needed because we need to know what kind of tuple we are processing,
“sameAs” or generic, and in case it is generic, whether the key was the subject
or the object.

The algorithm is reported in Algorithm 17. We need to execute this job two
times. The job generates some duplicates and therefore we need launch a third
filtering job.

6.8 Seventh block: hasValue statements

In this block we execute rules 14a and 14b. Both rules have access to the schema
triples that define the relations “onProperty” and “hasValue”. Rule 14a works
only with “type” triples, while the other rule works with generic ones. We
assume that rule 14b cannot accept “type” triples because this would mean
that we define a relation “onProperty” on the rdf:type predicate and since we
do not allow any redefinition of the standard constructs, this case is simply
ignored. This implies the two rules works on two disjoint groups.

The mappers split the triples in two groups depending whether the predicate
is rdf:type or not. If the triple has rdf:type as predicate it will be processed
according to the logic of rule 14b, otherwise it will be by rule 14a. We set as the
tuple’s key the subject of the triple so that the tuples are grouped according to
the subject. This grouping aims to limitate the number of generated duplicates.
In case of rule 14b we put as value only the object, since the predicate is always
rdf:type, while in the other case we encode as value both the predicate and
object.
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Algorithm 17 OWL: sixth block, encode rule 11

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : input t r i p l e

i f ( va lue . p r e d i c a t e = owl : sameAs ) then
key = value . s u b j e c t + ’S ’
output . c o l l e c t ( key , ’ 0 ’ + value . ob j e c t )
key = value . ob j e c t + ’S ’
output . c o l l e c t ( key , ’ 1 ’ + value . s u b j e c t )

e l s e
key = value . s u b j e c t + ’O’
outValue = ’1 ’ + value . p r e d i c a t e + value . ob j e c t
output . c o l l e c t ( key , outValue )
key = value . ob j e c t + ’O’
outValue = ’2 ’ + value . p r e d i c a t e + value . s u b j e c t
output . c o l l e c t ( key , outValue )

reduce ( key , iterator va lue s ) :
va lue = va lues . unique
for ( va lue in va lue s )

i f ( va lue [ 0 ] = ’0 ’ ) then //sameAs t r i p l e
sameAsSet . add ( value . r e s ou r c e )

e l s e
for ( sameResource in sameAsSet )

i f ( va lue [ 0 ] = ’1 ’ ) then // v a l u e i s p + o
output . c o l l e c t ( nu l l , t r i p l e ( sameResource ,

va lue . re source1 , va lue . r e sour ce2 )
e l s e // v a l u e i s p + s

output . c o l l e c t ( nu l l , t r i p l e ( va lue . re source2 ,
va lue . re source1 , sameResource ) )
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Algorithm 18 OWL: seventh block, encode rules 14a,14b

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : input t r i p l e
i f ( va lue . p r e d i c a t e = rd f : type ) then

output . c o l l e c t ( va lue . sub ject , ’0 ’+ value . ob j e c t )
e l s e

output . c o l l e c t ( va lue . sub ject , ’1 ’+ value . p r e d i c a t e+value . ob j e c t )

reduce ( key , iterator va lue s ) :
for ( va lue in va lue s )

i f ( va lue [ 0 ] = 0) then // r u l e s 14 b
onProper t i e s = onPropertySchema . get ( va lue . ob j e c t )
hasValues = hasValueSchema . get ( va lue . ob j e c t )
i f ( onProper t i e s != n u l l and hasValues != n u l l ) then

// the t r i p l e ’ s o b j e c t matches wi th the schema
for ( onProperty in onProper t i e s )

for ( hasValue in hasValues )
output . c o l l e c t ( nu l l , t r i p l e ( key . sub ject , onProperty , hasValue )

e l s e // r u l e 14a
onProper t i e s = onPropertyInvertedSchema . get ( va lue . p r e d i c a t e )
hasValues = hasValueInvertedSchema . get ( va lue . ob j e c t )

types = onProper t i e s $\and$ hasValues
for ( type in types )

output . c o l l e c t ( nu l l , t r i p l e ( key . sub ject , rd f : type , type )

The reducers first check the flag in the value to know which rule they should
execute. After, they check if the information contained in the values matches
against the schema. In case it does, the reducers derive the new triples.

The two rules use the same schema triples for the join, but using different
match points. For this reason the two schema triples (“onProperty” and “has-
Value”) are loaded in 4 different hashtables. In the first two we set the triples
subjects as key and the objects as value. These will be used by rule 14b. The
others are generated in the opposite way, using the triples objects as key and
the subjects as value. These two will be used for rule 14a.

The algorithm is reported in Algorithm 18. This job generates some dupli-
cates and therefore we launch another job to clean up the duplicates.

6.9 Eighth block: someValues/allValuesFrom schema

In this block we execute the last two rules: rule 15 and rule 16. These two rules
require a join between 4 different triples. Two of them are schema triples and
they can be loaded in memory. The other two are data triples and therefore we
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need to execute the join in a “naive” way.
As usual we use the map phase to group the triples to limitate the duplicates.

Since the join involves also two parts with many elements (the “type” triples
and the generic ones) we apply the same trick than we used with block 6 to
avoid to load in memory all the elements. We add one byte to the tuple’s key
(the flag ’T’ or ’W’), and then, using a special hash-code and sorting function,
we are able to sort the list of values putting the “type” triples first.

In case the triple is a “type” one, it can be matched only by the object,
therefore the mapper will output only one tuple with the subject as key and the
object as value. In case the triple is a generic one, it can be matched using either
the combination “subject + predicate” (rule 16) or the combination “object +
predicate” (rule 15). Therefore, the map algorithm will output two tuples, one
with the subject as key and the sequence “predicate+object” as value, and the
other with the object as key and the sequence “predicate+subject” as value.

The reduce algorithm loads first the “type” triples in memory scrolling over
the values. Then it checks the flag of the values and applies the appropriate
rule according to it. In case the flag is 1 the algorithm will apply the logic of
rule 16, otherwise it will apply the one for rule 15.

In case of rule 15 the reducer first checks whether the predicate that is
contained in the value matches with the “onProperty” schema. When it does it
further continues checking whether the “onProperty” values just derived match
with the “someValuesFrom” schema. The values that are retrieved from this
last matching are further checked against the “type” triples loaded before in
memory. If there are values for which all these matching succeed, the algorithm
derives the new triples.

In case of rule 16 the algorithm first matches the predicate against the “on-
Property” schema. The values just returned from this join are further matched
against the “allValues” schema and the output values against the “type” triples.
Similarly as before, when all these matching succeed the algorithm derives the
new statements.

Both rules are recursive and this means we must run the job more times until
we have derived everything. After, we launch a job to clean up the duplicates
that were produces during the previous jobs.

After this last block has finished the computation the main algorithm con-
trols whether it has derived some new triples during the executions of the eight
blocks. In case it did, it starts the loop again executing the first block.
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Algorithm 19 OWL: eighth block, encode rules 15,16

map( key , va lue ) :
// key : i r r e l e v a n t
// v a l u e : input t r i p l e
i f ( va lue . p r e d i c a t e = rd f : type ) then

outKey = value . s u b j e c t + ’T’
outValue = ’0 ’ + value . ob j e c t
output . c o l l e c t ( outKey , outValue )

e l s e
outKey = value . s u b j e c t + ’W’
outValue = ’1 ’ + value . p r e d i c a t e + value . ob j e c t
output . c o l l e c t ( outKey , outValue )

outKey = value . ob j e c t + ’W’
outValue = ’2 ’ + value . p r e d i c a t e + value . s u b j e c t
output . c o l l e c t ( outKey , outValue )

reduce ( key , iterator va lue s ) :
// ’ ’ types ’ ’ w i l l conta in a l l the t y p e s o f the resource in the
// key
types . c l e a r ( ) ;
while ( va lue s hasNext and value [ 0 ] = 0)

value = va lues next
types . add ( value )

while ( va lue s hasNext )
va lue = va lues next
//match the p r e d i c a t e wi th the ” onProperty ’ ’ schema
onProper t i e s = onPropertySchema . get ( va lue . p r e d i c a t e )
for ( onProperty in onProper t i e s )

i f ( va lue [ 0 ] = 1) then // r u l e 16
i f ( types . conta in s ( onProperty ) then

a l l V a l u e s = al lValuesSchema . get ( onProperty )
for ( a l lVa lue in a l l V a l u e s )

output . c o l l e c t ( nu l l ,
t r i p l e ( va lue . sub ject , rd f : type , a l lVa lue )

e l s e // r u l e 15
someValues = someValuesSchema . get ( onProperty )
for ( someValue in someValues )

i f ( types . conta in s ( someValue ) then
output . c o l l e c t ( nu l l ,

t r i p l e ( va lue . sub ject , rd f : type , onProperty )



Chapter 7

Results

In this chapter we report an analysis of the performances of the algorithms we
have proposed. Section 7.1 reports some technical characteristics of the envi-
ronment in which we conducted the tests. Section 7.2 reports the performances
obtained and an evaluation of them.

7.1 Experiments settings

For the evaluation of the program we have used the cluster DAS3 at the Vrije
Universiteit 1. It is a cluster with 85 nodes, each equipped with two dual core
processors with 4GB of main memory and 250GB hard disk. The nodes are
interconnected through Gigabit Ethernet.

We set up an Hadoop cluster reserving one node for the jobtracker and one
node for the namenode. We used a variable amount of slaves for the scalability
tests, starting from 1 to 64.

The programs that were developed are written in Java 1.6 and they use the
0.19.1 version of Hadoop. The programs are publicly available on Internet 2.

7.2 Results

We have divided this section in three parts. Subsection 7.2.1 reports the per-
formances and an evaluation of the dictionary encoding algorithm that was
proposed in 4.4. Subsection 7.2.2 reports the performances and an evaluation
of the RDFS reasoner. Subsection 7.2.3 reports the performances and a brief
analysis of the OWL reasoner.

1http://www.cs.vu.nl/das3
2https://code.launchpad.net/~jrbn/+junk/reasoning-hadoop
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7.2.1 Dictionary encoding performances

The dictionary encoding algorithm uses two MapReduce jobs to encode the data
in a new more compact format. Our algorithm shows load balancing problems
that are limited by the fact we use the triples IDs instead of the full text, but
still persist with a big input. To solve this problem we introduced a cache with
the most popular resources to help the load balancing. However, in case we
decide to use the cache, we need to launch first an additional job to build the
cache. The time that this job takes should be detracted by the advantage we
gain in using it during the dictionary encoding.

What we require from the algorithm, whether we decide to use the cache or
not, is to be scalable. We have measured the scalability of the algorithm with
a different input size and with different nodes.

We report in Figure 7.1 the results of the scalability test varying the input
size with and without the cache. Analogously, in Figure 7.2 we report the
performances of our algorithm keeping the input size fixed but using a different
number of nodes.

Figure 7.1: Scalability test of dictionary encoding varying the input size

From these graphs we can see how the algorithm performs better when we
use the cache. This behavior is expected because without cache the computation
speed is affected by the load balancing problem. When we introduce the cache,
we eliminate or at least reduce the load balancing issue and the scalability shows
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Figure 7.2: Scalability test of dictionary encoding varying the number of nodes
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an almost perfect linearity.
In order to use the cache during the dictionary encoding we first must launch

a simple MapReduce job that counts the most popular resources in the input.
We require scalability also from this job, otherwise it cannot be used for large
input. For this reason we have measured the performances of this job with
different input sizes and the results are reported in figure 7.3. We conclude that
also this job scales well because it shows a linear scalability.

Figure 7.3: Scalability of building the cache

So far we have seen that the cache increases the performances of the al-
gorithm both in terms of execution time and in terms of scalability. Also the
algorithm that builds the cache proved to be scalable. In Figure 7.4 we summed
up the time of building the cache with the time of executing the dictionary
encoding and we compared it with the execution time of the algorithm without
the cache. The purpose is to evaluate whether is worth or not to use the cache
in terms of total execution time. What we can see is that the sum of the two
executions is always longer than just executing the algorithm without using the
cache. What we conclude, from these results, is that though the cache improves
the scalability of the algorithm, it is not worth to use because the total execution
is longer than just using the algorithm without the cache.

An explanation for it could be that in our case the load balancing does
not hurt so much to justify a cache. However it can also be that the job of
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building the cache is in general too slow and it will never be smaller than the
gain obtained by using the cache.

Figure 7.4: Performances between not using cache and using it considering also
the cache’s building time

One last analysis can be done varying the cache size and seeing if there is a
notable increase of the performances if we use a bigger cache. For this purpose
we launched the first job of dictionary encoding using a different cache’s size.
We expect that if we increase the cache size we obtain better performances until
a certain limit. After, there shouldn’t be any notable difference, because the
job should be balanced enough. We conducted the tests and we reported the
results in Figure 7.5. As it can be seen from the graph, the results reflect the
initial expectations: the execution time decreases drastically until 15 elements,
then the time decreases less and it stabilizes between 50 and 100 elements. We
conclude from it that the ideal cache size for this input should be between 10
and 50 elements because after we do not gain any speedup anymore.

7.2.2 RDFS reasoning performances

We considered three aspects in evaluating the performances of the RDFS rea-
soner.

The first is correctness. Obviously the algorithm must produce a result that
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Figure 7.5: Performances using different cache’s size



7.2. RESULTS 77

Dataset Input Output Exec. time Rel. StDev
Wordnet 1,942,887 3,004,496 2m25s 9.8%
DBPedia 150,530,169 21,447,573 2m44s 4.1%
Falcon 32,512,291 832,412,298 4m35s 1.1%
Swoogle 78,839,999 1,431,765,550 6m33s 0.7%
1B competition 864,846,753 29,170,100,223 58m43s 1.9%

Table 7.1: Performances RDFS reasoner on different datasets

is sound and complete and our first concern was to verify it. We first produced
some test cases and verified that the output was correct. Then we compared the
amount of derived triples of a small ontology (wordnet) with the amount that
was derived by an already existing algorithm to see if there were some noticeable
differences. We could not find any mistake, therefore we will assume that the
result produced is correct, though we cannot guarantee that the implementation
is bug-free.

The second aspect is stability. Since we use a distributed system, it is im-
portant that our algorithm is reliable, always ending at about the same time.
For this reason we repeated every test three times and we picked the average
and standard deviation of the outcome.

The third aspect is the scalability. The program we developed must be
scalable, because this is our request. It is difficult to evaluate the scalability
against the input size because, as it will be shown, much depends on the data
itself. We tested the reasoner on different datasets of various sizes and we have
reported the measurements. We have also tested the performances using the
same dataset as input and changing the amount of nodes of the framework.
First we started with 1 node, then we added another node, and so on, till we
arrived to 64 nodes.

Here we present the results that we have collected.

Scalability with different data sets

As first we present the measurements of the reasoner using different datasets.
We conducted the following tests using 32 working nodes.

Table 7.1 reports the performances obtained launching the algorithm on
different data sets. From the table we notice that the deviation is relatively
low, therefore we can conclude that our approach is reliable since it always
terminated at about the same time.

In Figure 7.6 we report a chart were we indicate how much time every single
job of the reasoner took for the execution. In table 7.2 we report how many
triples every single job has processed in input and in output plus the ratio
between them. We can see that in general Job 4 is the one that takes the most
time for the computation and the one that generates most of the derivation.

The execution time does not depend on the input size. We plot in Figure
7.7 the execution time against the input. We can see from the plot that there
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Figure 7.6: Scalability RDFS reasoner on different datasets

Job 1 Job 2 Job 3 Job 4 Job 5

Dataset I O R I O R I O R I O R I O R

Wordnet 2M 0.29M 0.15 2.2M 0.896M 0.4 3.1M 1M 0.34 1.2M 1.9M 1.55 1.7M 0 0

DBPedia 150M 0 0 150M 3.6M 0.02 154M 2.3M 0.01 10M 19M 1.87 0 0 0

Falcon 32.5M 15M 0.46 47.6M 71M 1.49 119M 74.5M 0.62 71M 757M 10.6 39M 0.037M 0

Swoogle 78.8M 30M 0.38 109M 214M 1.95 323M 235M 0.72 219M 1.2B 5.44 104M 0.059M 0

1B Chal. 864M 387M 0.44 1.2B 1.6B 1.33 2.9B 1.9B 0.64 1.6B 27B 16.54 1B 0.1M 0

Table 7.2: RDFS reasoner
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is any proportion between them.

Figure 7.7: Scalability RDFS reasoner against input

Figure 7.8 reports the same graph but against the output triples. Here we
see a linearity between the time and the amount of triples. This behavior is
expected since the complexity of reasoning is not proportional to the input size,
but instead is more related to the output size.

Scalability with different amount of nodes

We report now the scalability of the algorithm changing the number of compu-
tational nodes. We have used two fixed datasets, Falcon and DBPedia, and we
started from 1 node and increased to 64. The results are reported in Figure 7.9
while table 7.3 reports the speedup and the efficiency for both datasets.

We notice from the graph that the execution time steadily decreases till 8
nodes it it stabilizes around 32 nodes. The explanation for this flattering is that
with 32 or more nodes the computation load per node is not big enough to cover
the framework overhead. In other words, the datasets are too small for so many
nodes and we pay too much in terms of framework’s overhead that there is no
notable difference in the execution time.
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Figure 7.8: Scalability RDFS reasoner against output

Falcon DBPedia
Nodes Time Speedup Efficiency Nodes Time Speedup Efficiency
1 54m29s 1 100% 1 25m59s 1 100%
2 30m59s 1.76 88% 2 13m15s 1.96 88%
4 16m3s 3.4 85% 4 6m52s 3.78 95%
8 9m3s 6.02 75% 8 4m46s 5.44 68%
16 5m58s 9.14 57% 16 3m55s 6.64 42%
32 4m35s 11.9 37% 32 2m44s 9.48 30%
64 4m18s 12.69 20% 64 2m37s 9.93 16%

Table 7.3: Speedup and efficiency of RDFS reasoner
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Figure 7.9: Scalability RDFS reasoner with different nodes
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7.2.3 OWL reasoning performances

We have also tested the implementation of the OWL reasoning described in
this paper but the performances are much worse than RDFS. We first present
the performances using a real-world dataset of 35M of triples and then using a
smaller and artificial data set of 6M of triples.

Performances on a real-world dataset

We first launched the reasoner on the Falcon dataset but the first trial did not
succeeded. The jobs with the “sameAs” rules derived too many triples and we
soon finished all the available space. We then tried to launch the reasoning
excluding block 3 that is the one which applies the “sameAs” rules. The perfor-
mances got better, but the program was still very slow and we stopped it after
12 hours, 130 jobs launched and more than 3.8B triples derived.

Performances on an artificial dataset

We tested the reasoner on a smaller and artificial dataset. We took the bench-
mark tool LUBM and we generated a small dataset of about 6 million triples.
The reasoner finished the computation after 2h58m50s and derived about 5
million of new statements.

Looking at these results we conclude that the OWL implementation we have
presented is very slow and inefficient, also compared with already existing rea-
soners.

An explanation could be that the ontologies we used contain data that do
not comply to the standard and if we “blindly” apply the rules we just derive
too many triples. However this conclusion is not enough to explain the poor
performances since we have also tested the reasoner with a benchmark tool
which generates a “clean” ontology. The main problem relies on the fact that
we need to relaunch the jobs more than one time in order to derive everything.
The optimizations we have introduced for the RDFS reasoner do not apply
for some of the OWL rules and the performances are much worse than in the
previous case.



Chapter 8

Future extensions and
conclusions

In this thesis we address the problem of doing a scalable reasoning over a large
amount of data. The problem is relevant in order to use the Semantic Web on
a web-scale.

Our hypothesis is that we can design a scalable and efficient reasoning algo-
rithm using a distributed approach, and, more specifically, using the MapReduce
programming model.

In this work we have proposed some algorithms to verify our hypothesis and
we tested the performances with different data sets and configurations. We have
also implemented a dictionary encoding procedure to compress the input data
and speed up the computation.

Initially we have discussed over a possible dummy implementation of the
RDFS reasoning and we explained that there are too many problems with it.
We have introduced three optimization in the algorithm that revealed to be
crucial. These optimizations are:

• loading in memory the schema triples and executing the derivation on-
the-fly;

• using a special rules execution order so that we avoid any loop;

• grouping the triples so that we eliminate duplicates during the derivation.

The results showed that the RDFS implementation is performant, computing
the RDFS closure over the 1B triples from the 2008 Billion Triples challenge in
less than one hour. We are not aware of any other implementation that neither
can scale up to this size nor that can compute the closure in a time comparable
to ours.

We have also designed an algorithm that does OWL reasoning but the results
were disappointing. The algorithm is slow and fragile since we had to deactivate
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some rules in order to execute it on real-world data sets. However the algorithm
is still at a primitive stage and there are still many optimization to test.

After having analyzed the performances of the algorithms we conclude that
our initial hypothesis is confirmed regarding RDFS reasoning. The performances
we have measured show that our RDFS algorithm is efficient and scalable. Un-
fortunately we cannot conclude the same about OWL reasoning. Our approach
showed to be slow and fragile. However, there are still too many optimizations
to test and it is too early to give a definite answer.

The optimizations we can do on the OWL reasoning are left as a future work.
We now mention some of them.

As first, we can optimize the rule’s execution order. Unfortunately in OWL
it is not possible to avoid the loops between the rules, but maybe it is possible
to find an order for which the number of required jobs is minimal.

Another way to improve the poor OWL performances could be in finding
a better way to execute the joins. Here, what we do is to apply the joins in
a “naive” way, however we have shown for the RDFS reasoning that there are
other ways, much faster.

One interesting extension could be to introduce some restrictions on the
data in order to provide a more robust reasoning. In this thesis we “blindly”
apply the rules without any data preprocessing but it was shown in [11] that the
data in the Web contains many anomalies and that we need to filter out some
dirty data that could lead either to an explosion of the derivation or to some
contradictory statements. Such preprocessing could also prevent our reasoner
from ontology hijacking that can happen when we crawl the data from the web.

Concluding, the work here presented has returned encouraging results. The
OWL reasoner is not yet competitive but this is mainly due to its early develop-
ment and it is too early to give a definite answer about its validity. On the other
hand, the RDFS reasoner has shown good perfomances and scalability and we
are not aware of any other approach with neither even comparable performances
nor with a similar scalability. With future reearch we can refine the algorithms
incrementing the performances and the quality of the derived information.
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Christoph Pinkel. An experimental comparison of RDF data management
approaches in a SPARQL benchmark scenario. In International Semantic
Web Conference, pages 82–97, 2008.

[25] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Semantics:
Science, Services and Agents on the World Wide Web, 5(2):51–53, 2007.

[26] Ramakrishna Soma and V. K. Prasanna. Parallel inferencing for OWL
knowledge bases. In Proceedings of the 2008 37th International Conference
on Parallel Processing, pages 75–82, Washington, DC, USA, 2008. IEEE
Computer Society.

[27] Herman J. ter Horst. Completeness, decidability and complexity of en-
tailment for RDF schema and a semantic extension involving the OWL
vocabulary. Journal of Web Semantics, 3(2-3):79–115, 2005.

[28] Ora Lassila Tim Berners-Lee, James A. Hendler. The semantic web. Sci-
entific American, 284(5):34–43, 2001.

[29] Dmitry Tsarkov and Ian Horrocks. Description logic reasoner: System
description. In IJCAR, pages 292–297, 2006.

[30] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-
reduce-merge: simplified relational data processing on large clusters. In
Proceedings of the 2007 ACM SIGMOD international conference on Man-
agement of data, pages 1029–1040, New York, NY, USA, 2007. ACM.

[31] Justin Zobel, Steffen Heinz, and Hugh E. Williams. In-memory hash ta-
bles for accumulating text vocabularies. Information Processing Letters,
80(6):271–277, 2001.


	Introduction
	Outline
	Parallel and distributed reasoning

	Background
	Reasoning
	Semantic Web and XML
	RDF
	RDF Schema
	RDFS reasoning

	OWL
	OWL reasoning

	The MapReduce programming model
	Example: Counting occurences of words
	Parallelism of the job execution
	Programming rigidity

	The Hadoop framework

	Related work
	Classical reasoning
	Large-scale reasoning
	Dictionary encoding

	Dictionary encoding as MapReduce functions
	Why do we need dictionary encoding
	Dictionary encoding using MapReduce and a central database
	Dictionary encoding using MapReduce and a distributed hashtable
	Dictionary encoding using only MapReduce
	Overview
	First job: assign number to the URIs
	Second job: rewrite the triples
	Using a cache to prevent load balancing


	RDFS reasoning as MapReduce functions
	Excluding uninteresting rules
	Initial and naive implementation
	Example reasoning job

	Second implementation
	Rule's execution order
	Loading the schema triples in memory
	First job - apply transitivity rules
	Second job

	Third and final implementation
	Generation of duplicates
	First job: subproperty inheritance
	Second job: domain and range of properties
	Third job: cleaning up duplicates
	Fourth job: execute subclasses rules
	Fifth job: further process output special rules


	OWL reasoning as MapReduce functions
	Overview
	First block: properties inheritance
	Second block: transitive properties
	Third block: sameAs statements
	Fourth block: equivalence from subclass and subproperty statements 
	Fifth block: derive from equivalence statements
	Sixth block: same as inheritance
	Seventh block: hasValue statements
	Eighth block: someValues/allValuesFrom schema

	Results
	Experiments settings
	Results
	Dictionary encoding performances
	RDFS reasoning performances
	OWL reasoning performances


	Future extensions and conclusions

