· enum is a keyword starting from Java 6.
· default is a reserved word.
· true is a literal. 

· Using of static imports is a better alternative to implementing an interface that declares only constants. 

· Marking all class fields as private makes them protected from accidental corruption and improves encapsulation. 

· The benefit of encapsulation is that the implementation of a class can be changed without breaking code that uses it. 

· Constructors are not inherited. 
· Constructors can be overridden.

· The default constructor is explicitly declared constructor that takes no arguments.

· The default constructor takes a parameter of void.

· Any method may contain a call to this() or super().

· A final method cannot be overloaded. 

· A static final method cannot be hidden.

· A static method may not be overridden.

· When a package-private method is overridden by a package-private method in a different package compile-time error occurs.

· An abstract class must contain at least one abstract method.

· An abstract class must be extended.

· An abstract class may not have any final methods.

· A final class must contain at least one final method.

· An anonymous inner class cannot have any constructors except the default one.

· An anonymous inner class may implement at most one interface. 
· An anonymous inner class that implements one interface may extend a parent class other than java.lang.Object.

· A class defined within a method can access any fields accessible by the enclosing method.

· An instance of a nested class can be created without an instance of its enclosing class. 
· You might want to define a method as native to access hardware that Java does not know about. 
· An enum may be subclassed.

· An enum may implement an interface. 
· If enum declares a constructor, it should have private modifier.

· By default the methods name() and toString() of enum return its constant name. 
· The following path org/my company/module/Service.java is a valid location for Java class in corresponding package.

· A Java file containing a top-level class and an inner class will only produce one .class output file after compilation.

· It is possible to load the same class by two ClassLoaders.

· If the source file contains large number of imports, it affects the compilation time (so it takes slightly more time).

· The following code will instantiate the corresponding inner class: Outer.Inner i = Outer().new Inner();
· When new operator is called from a function, the memory is allocated on the stack.

· Arguments are always passed by value in Java.

· (x instanceof String[]) == (x != null && x.getClass().isArray() && x.getClass().getComponentType() == String.class) 

· In order to place the string instance s to string pool, one need to call s.intern().

· All string literals are interned. 

· java.io.Console#readPassword() returns char[] because String is not secure as it can be interned and thus stay in memory uncontrolled long. 
· String.substring() may result a memory leak before Java7.

· Most JVMs use the double indirection technique for object references, which allows garbage collector to relocate objects and reduce memory fragmentation. 
· The call to System.free() will suggest the JVM to perform garbage collection.

· Runtime.halt(int) method executes shutdown hooks the same way as System.exit(int). 

· double can contain a 64-bit integer.

· The range of values for int type depends on underlying platform: for 32-bit platforms it is [-232 .. 232 - 1] and for 64-bit platforms it is [-264 .. 264 - 1].

· myarray.length() returns the number of elements in the given array.

· The expression long microsPerDay = 24 * 60 * 60 * 1000 * 1000; will correctly assign the number of microseconds in a day to the variable. 

· System.out.println(myarray.toString()); will print all array elements to the screen.

· It is possible to create a two-dimensional array in Java (e.g. the array where a[x][y] == a[x*sizeof(row) + y]).

· Assignment Float a[] = {1.2}; is correct.

· Declaration char a = '\u000A'; does not cause a compile-time error.

· Knowing that 0x5C is backslash (\), the following code System.out.println("\uuuuu005c""); does not cause a compile-time error.

· The following code String path = "map.txt"; // Taken from C:\cygwin\usr\share\map.txt does not cause compile-time error.

· short[] a = { 0 }; Cloneable c = a; is a correct assignment.

· The statement Byte a[] = null; Byte b[][] = null; boolean result = a == b; is correct and results true.

· new String() instanceof List causes compile-time error.

· new Integer(0) == 0.

· The code Math.ceil(Math.random() * 10) always generates integer numbers from 1 to 10.

· The initialization operator (byte b = 2) and incrementing, subtraction, multiplication, division operators (e.g. b += 2) are the only cases in Java when explicit casting is not necessary. 
· Unary arithmetic operators ++ and -- do not perform promotion on their operands. 
· The + expression when one of the operands is not primitive numeric type, a String or a character literal, is illegal.

· When a byte is added to a char, then the result type is short.

· The expression i ^ i always results 1 for any i of type int.

· int x = 6; x = ~x; is a correct expression. 
· The result of this expression -50 >> 1 is 25.

· byte x = -1; x >>>= 5; results a positive value in x.

· The result of this expression -5 % 2 is 1.

· ArithmeticException is always raised by division operator when division by zero occurs (e.g. float a = 20.0f / 0).

· ArithmeticException can only be raised by division operator when division by zero occurs (e.g. int a = 5 / 0).

· 0.1 * 3 == 0.3
· For float variable x, the most appropriate way to test for a NaN is if (x != x) ... // then x is NaN.

· Integer.MIN_VALUE == -Integer.MIN_VALUE
· Math.abs(Integer.MIN_VALUE) == Integer.MAX_VALUE 

· Math.min(Double.MIN_VALUE, 0.0d) returns 0.0. 

· In case the type of x is a class and the type of y is an interface then the assignment x = y; is never legal. 

· The argument for a switch statement may be of type long.

· The code for(;;) {} causes the endless loop. 

· It is possible to define two variables in for-statement this way: for (int i = 0, int j = 0; i < 10 && j < 10; i++) ...;
· Assertions are used to enforce class invariants.
· The code int x = 5; assert (x == 6) ? "x == 6" : "x != 6"; with result AssertionError with message x != 6.

· Checking the postconditions of public and private methods is appropriate with assertions. 

· The exception's stack trace is constructed when printStackTrace() method is called. 

· Long.valueOf(5).equals(5) 

· Suppose o1 and o2 are references to instances of java.lang.Object. If (o1 == o2) == false, then o1.equals(o2) can be true. 

· return (int) Math.random(); is a valid hashCode() method implementation for any class. 

· Arrays.toString(Object[]) can deal with nested arrays and circular object references. 



· Java collection classes make it unnecessary to use arrays. 

· The elements of collection can be ordered by using the Collections.order() method. 

· The ordered collection can be transformed to sorted collection by using Collections.sort() method. 

· Vector<Map> v; is a correct Java 5 declaration.



· File dir = new File("."); dir.chDir(".."); will change to the directory above the current directory. 

· StreamReader class is designed to read characters from the stream (e.g. file or socket). 

· BufferedInputStream#peak() method can be used to get the next character from the stream without shifting the stream position forward.

· OutputStreamWriter must take a character encoding as a constructor parameter.

· InputStreamReader may act as a constructor to OutputStreamReader to convert between character sets.

· It is possible to configure timeout for socket write() operation.

· All constructors of RandomAccessFile must take a string mode parameter. 
· rw, r, w are valid mode parameters for RandomAccessFile constructor.

· The default encoding for OutputStreamWriter is ASCII.

· System.out is the instance of OutputStream. 

· The function OutputStream#write(int b) writes an integer to the stream.

· Java can display Unicode characters only if underlying filesystem supports unicode.

· UTF-8 characters are all 8 bits.



· In order to provide a custom class deserialization one need to implement the private void readExternal() method for that class.

· static variables may not be transient.

· There is no limitation on constructors for the class that implement Externalizable interface for it to be correctly deserialized.

· If the class implements Serializable and does not implement Externalizable, its nearest superclass that doesn't implement Serializable must have a no-args constructor. 

· The code public Animal clone() { return (Animal) super.clone(); } is valid clone() implementation of class Animal that extends Object.

· To encrypt the object during serialization, one need to wrap it into javax.crypto.SealedObject. 

· Byte class has readResolve() method to enforce the flyweight pattern. 



· wait()/notify() methods is better (recommended) way to block a thread than pause()/suspend(). 

· start() method is used to tell a thread that it has the opportunity to run. 

· A Java monitor must either extend Thread or implement Runnable. 

· In order to specify which thread is notified, one need to call notify() method on that thread. 

· The thread that calls notify() gives up the lock. 

· In order to release a lock on the object obj one need to call obj.wait().

· An object maintains one lock per each declared non-static synchronized method. 

· A synchronized method should not call a different synchronized method of the current object as it will lock the thread. 

· Is it possible to write code that can execute only if the current thread owns multiple locks. 

· To ensure that multithreaded code does not deadlock, all threads need to yield from time to time. 

· Marking all class methods with synchronized modifier is enough to avoid concurrency issues with this class. 

· The waiting thread should check the wakeup invariant in a loop to protect from spurious wakeup. 

· StringBuffer is generally faster than StringBuilder. 

· Synchronizing only a subset of a method can be useful when you want to hold the lock as briefly as possible, so that other threads can get their turn as soon as possible. 



· Java 6 uses time-slicing scheduling system for threads which is better than pre-emptive (co-operative) system, used in previous Java versions. 

· Directly subclassing Thread gives you access to more functionality of the Java threading capability than implementing the Runnable interface. 

· Threads are guaranteed to run with the priority that you set using the setPriority() method. 

· Threads inherit their priority from their parent thread. 

· A thread created by a daemon thread is initially a non-daemon thread. 

· Garbage collector is a daemon thread. 

· When an application begins running there is one non-daemon thread whose job is to execute main().

· The JVM runs until there are no daemon threads. 

