
M.R. Berthold, R. Glen, and I. Fischer (Eds.): CompLife 2006, LNBI 4216, pp. 107 – 118, 2006.
© Springer-Verlag Berlin Heidelberg 2006

High-Throughput Identification of Chemistry in Life
Science Texts

Peter Corbett and Peter Murray-Rust

Unilever center for Moleclular Sciences Informatics, Lensfield Road, Cambridge,
CB2 1EW

Abstract. OSCAR3 is an open extensible system for the automated annotation
of chemistry in scientific articles, which can process thousands of articles per
hour. This XML annotation supports applications such as interactive browsing
and chemically-aware searching, and has been designed for integration with
larger text-analysis systems. We report its application to the high-throughput
analysis of the small-molecule chemistry content of texts in life sciences, such
as PubMed abstracts.

1 Introduction

Chemical knowledge is an important component of bio-literature, as show by the
recent prominence of ontolgies and resources on bio-informatics sites. ChEBI[1] (at
the European Bioinformatics Institute) lists 7592 compounds of relevance to
bioscience. The NCBI has recently provided PubChem as the repository of chemical
data created in the NIH’s Molecular Libraries Roadmap. Its importance has been
shown by the addition of the ZINC database of commercially available compounds,
bringing PubChem’s size to about 5 million compounds and covering almost all those
in common use.

Currently few publishers actively add chemical semantics to their products.
Recently Nature Chemical Biology has produced connection tables (the formal
computer representation of the structure) and made them available to PubChem. For
almost all articles, however, the identity of the chemistry in the text has had to be
extracted by human experts.

Natural language processing (NLP) of the biological, biochemical and biomedical
literature is a well-developed area with a lot of activity. There is considerable activity
from both a number of commercial entities (eg. Temis, Linguamatics, PubGene) and
academic projects (eg. PennBioIE[2], FlySlip[3], GENIA[4]). There are a number of
freely-usable web tools based on NLP technology (eg. MEDIE[5], Info-Pubmed[6],
iHOP[7], EBIMed[8], Textpresso[9]). The biological NLP community is assisted by a
variety of publically-available resources. Hand-annotated corpora have been made
available by the PennBioIE and GENIA groups. Large amounts of the literature are
available in the form of PubMed/MEDLINE, which is commonly used as a corpus,
for example by the web tools mentioned above, and other resources such as the Gene

108 P. Corbett and P. Murray-Rust

Ontology and other members of the Open Biomedical Ontologies family (which
includes ChEBI). Finally, the field is assisted by competitive evaluations like
BioCreAtIvE[10] and the TREC genomics track[11].

Development of natural language methodologies for chemistry lags behind that of
the biochemical world. We have been able to find several works in the area[12-20],
but not the same level of activity as is observed in the bioscience.

In this paper we describe an open source system, OSCAR3 which can identify
much of the chemical terminology in articles, and extract molecular connection tables
with useful recall and precision. OSCAR3 is being developed as a part of the SciBorg
project which aims to use deep parsing of text (described in [21]) to analyse chemistry
papers. Here we present the architecture and strategy of OSCAR3 as an open
extensible modular framework for individual and high-throughput chemical text
processing. The source code to OSCAR3 is on sourceforge.net[22].

1.1 Chemical Language in Bioscience

Among the useful information in manuscripts is
1. mention of chemical compounds.
2. details of synthesis (in vivo and in vitro) of compounds.
3. proof of structure (spectra and analytical data).
4. methods and reagents in bioscience bio-protocols.
5. properties of compounds.
6. reactions and their properties, both in enzymes and enzyme-free systems.

We consider both abstracts and full-text articles (a typical example on “Proton-
sensing G-protein-coupled receptors” [23], (reproduced with permission of Nature))

Buffers and pH Experiments were carried out in a physiological salt solution (PSS)
containing 130 mM NaCl, 0.9 mM NaH2PO4, 5.4 mM KCl, 0.8 mM MgSO4, 1.0 mM
CaCl2, 25 mM glucose. This solution was buffered either with HEPES alone (20 mM)
or HEPES/EPPS/MES (8 mM each; HEM-PSS), to cover a wider pH range. HEPES-
buffered PSS was used in all experiments unless HEM-PSS is specifically mentioned.
HEPES is 4-(2-hydroxyethyl) piperazine-1-ethanesulphonic acid…

This type of chemistry is very well understood and has a simple generic vocabulary
which has not changed over decades. Unlike much bioscience, where ontological
tools are an essential part of reconciling the domain-dependent approaches, much
chemistry has an implicitly agreed abstract description. The problems are primarily
reconciling syntax and semantics. This is because chemists use abbreviated methods
of communicating data, relying on trained readers to add information from the
context. We have reviewed current problems of machine-understanding of chemistry
in a typical chemistry journal[24] and requirements for parsing chemistry in life
sciences [25].

2 OSCAR3

OSCAR3 is being developed as part of the SciBorg system for the deep parsing and
analysis of scientific texts [21] and Fig 1. shows its role. Scientific articles in bespoke

 High-Throughput Identification of Chemistry in Life Science Texts 109

XML are converted to a canonical XML (“SciXML”, a schema developed by the
Cambridge natural language group). A selection of modules (including OSCAR3)
then annotate various concepts in the text. These annotations are collected together in
a standoff annotation document – a separate document that contains pointers to
elements in the source text, allowing the integration of the results from a range of
different parsers, and for earlier parsers to pass information to later parsers. The role
of OSCAR3 in the analysis of full text has informed many of our design and
prioritisation decisions. For example, it will be easier for the SciBorg system to deal
with false positives generated by OSCAR3 than with false negatives. Also, it is
important for OSCAR3 to be able to recognise as many entities as possible, even if it
cannot assign any semantics to many of them.

Fig. 1. Architecture of SciBorg. POS = Part Of Speech, RASP and ERG/PET are parsers for
English text, RMRS is a format for representing the semantics of parsed language, WSD =
Word Sense Disambiguation

 However, OSCAR3 can also be used in contexts other than the SciBorg framework.
For example, we have been developing a set of web tools for analysing, viewing and
searching texts using OSCAR3 in an essentially standalone manner. OSCAR3 could
also potentially be incorporated into a different framework – for example, integrating
OSCAR3 with biological NLP tools such as those mentioned in the introduction. To
expedite this, we have been developing OSCAR3 with thought for modification,
extensibility and integratability, making components modular and supporting them
with XML data files. For example, it should be possible to configure OSCAR3 to
recognise many GO terms by simple lookup, to recongise names of computation
chemistry codes and to configure OPSIN to parse many semi-systematic names
without editing the OSCAR3 source code.

The overall architecture of OSCAR3 is shown in Figure 2. The preferred input
format is SciXML, but rudimentary facilities exist for producing SciXML from plain
text or HTML, allowing documents to be fed to OSCAR3 from the world-wide web
via a Javascript bookmarklet. Abstracts may also be fetched from PubMed. An initial
module – the recogniser - finds chemical names, data and other entities in the text.
The names can be systematic (eg. propan-2-ol), trivial (morphine, water),
semisystematic (diacetylmorphine), acronyms and other abbreviations, (DMSO, 5-
HT) or formulae (C6H12O6, EtOAc). We also consider names of groups or other
fragments (methyl) and names in plural, verb or adjective form (azidomethanones,

110 P. Corbett and P. Murray-Rust

Fig. 2. Architecture of OSCAR3. Boxes represent OSCAR3 modules (except for PubChem),
boxes with turned corners represent documents at various stages of processing. See below for
further details.

demethylation, pyrazolic). In OSCAR3, “chemical” is intended to include simple
polymers as well as small molecules, but not complex biopolymers such as proteins
and nucleic acids. Elements are listed as a separate class (as it is often nontrivial to
determine whether “carbon” (for example) refers to carbon atoms within a molecule or
to the pure substance). “Data” refers to conventional representations of experimental
results – e.g. “[α]22D +10.0 (c 1.00, MeOH)”, which represents the optical rotation of
a substance. “Other entities” are other nonwords that occur in chemical free text, for
example “C(1)-N(6)” which refers to a particular bond in a molecule.

A second module – the resolver - examines the chemical names and attempts to
assign structures to them. Two forms of output are produced – a standoff annotation
document (for the rest of the SciBorg framework), and an enhanced SciXML
document that incorporates the annotations inline while preserving all of the
formatting, bibliographic, metadata and other markup that was in the source document.

Prior to name recognition, the text must be tokenised, by splitting on whitespace
and recognising full stops and other similar characters. A particular difficulty is posed
by hyphens, as these sometimes occur within chemical names (eg tert-butyl peroxide)
and sometimes divide names from other words (eg “hexane-ethyl acetate” is a
common phrase used to describe a mixture of the two solvents). Zamora and Blower
[17] only considered hyphens with two alphabetic characters on either side to be word
boundaries; we also have lists of strings that denote non-word-boundaries if they
come before the hyphen (eg. tert- is often a part of chemical names), and strings that
denote word boundaries if they occur after the hyphen (eg –containing, -induced).

To cope with the variety of forms of names and data to be recognised, several
methods are used in parallel for name recognition. OSCAR3 keeps an internal lexicon
of chemical names and structures – we have initially populated this using ChEBI[1]

Plain
Text

HTML

SciXML

Publishers’

XML

Tag
Stripper

Name etc.
Recogniser

XML:
Names
Data

Name
Resolver

XML:
Names

Structures
Data

XSLT

HTML
JavaScript

CML

PubChem

Chem-
NameDict

Name/

Structure DB

OPSIN

Name2
Structure

User collects
Stop words

Search
Engine

User follows links

User uses
bokkmarklet

 High-Throughput Identification of Chemistry in Life Science Texts 111

This collection is by no means comprehensive, but it does cover many key solvents,
reagents and biomolecules. This lexicon can be extended at run-time.

Names are also recognised using a naïve-Bayesian method based on overlapping 4-
Grams[26]. Wilbur et al. [13] have reported the use of a simple 4-Gram based
approach to recognise chemical names to obtain high precision and recall on their test
data. However, Vasserman [12] found that their simple approach gave poor results in
the more difficult context of PubMed abstracts, and experimented with a variety of
smoothing algorithms for the 4-Gram models to improve the performance of their
classifier. Neither approach has been used to find the bounds of chemical names in
free text. Here, we use modified Knesser-Ney smoothing[27] to produce a refined 4-
Gram model. Further improvements are obtained by applying a penalty to the scores
of words in a standard English dictionary, and by rejecting names that did not possess
a suffix from a list of 49 common chemical suffixes. A lexicon of stop words exists to
catch the most common errors. There are rules for which words to group together to
make multiword chemical names – for example a group name can add onto the front
of a chemical name, as in ethyl acetate. Finally, a set of cascaded regular expressions
is used to recognise chemical data[28], chemical formulae and other forms of
notation.

Structures are assigned to chemical names via two methods – lookup (using the
lexicon above), and parsing of systematic nomenclature (see below). The structures
are stored as SMILES, InChIs (International Chemical Identifier – an algorithmically-
generated, canonical identifier for chemical compounds developed by IUPAC) and
CML (Chemical Markup Language).

After parsing, the enhanced SciXML can then be rendered into HTML using an
XSLT stylesheet, and displayed in a browser. Javascript routines in the HTML are
used to feed the molecular structures back to the server when the mouse is moved
over them to produce and display a structural diagram. The pages are indexed by a
search engine based on Apache Lucene, which indexes the compounds by their InChI
identifiers, allowing them to be searched for specific compounds. The search engine
also contains the full structures of all of the compounds indexed; these may be
queried using substructure and similarity searches. This produces a list of InChIs
which are then used to retrieve documents relevant to the query. As well as retrieving
the documents, it is possible to list all of the compounds occurring in the documents,
sorted by their frequencies of occurrence.

The browser-based architecture also provides a useful way of retraining OSCAR3.
If a name does not have an associated structure, the structure (and synonyms) may be
fetched from PubChem. We have not incorporated PubChem into OSCAR3
wholesale, partly out of a concern for efficiency, and partly as not all of the names in
PubChem are accurate (see CIDs 26, 311) or appropriate (see CID 446220). Likewise,
if a word has been misclassified as a chemical name, it can be fed to a list of the list of
stop words, so that future occurrences of the word will not be classed as chemical.
The stop words are also used to retrain the Bayesian classifier, further improving its
accuracy. These techniques are especially useful in conjunction with the sorted
compound lists described above, as this allows for common compounds and errors to

112 P. Corbett and P. Murray-Rust

be identified and dealt with appropriately, reducing the amount of effort required to
adapt OSCAR3 to new domains.

2.1 Chemical Names

The conversion of systematic chemical names to structures is a surprisingly difficult
task: the official description[29] of the nomenclature is not presented in a formal way,
and so it falls to software authors to convert the descriptions provided into working
code. This is not a trivial problem and the various commercial offerings on the market
compete on the range of names that they can parse.

It is clear that OSCAR requires a chemical name parser, and there are a number of
reasons for us to write our own. The first is a sheer practicality – an open-source
parser made in-house is easier to integrate with other systems, and it is legally easier
to deploy and distribute the results. More importantly, having such a parser will allow
ourselves and others to experiment with parsing many of the ways nomenclature is
used in the chemical literature. We have therefore developed OPSIN – an Open Parser
for Systematic IUPAC Nomenclature.

A number of parsing schemes have been described in the literature. The earliest
approach we are aware of was reported by Vander Stouw et al.[30-31]. Later, Kirby et
al.[30] fitted names to a formal context-free grammar using a modified SLR parser. In
building a commercial parser for CambridgeSoft, Brecher expressed a frustration with
the formal grammars, and appears to have chosen a less formal approach.[32]

The published descriptions of these parsers are not sufficiently detailed to allow a
reconstruction of their work: for example Vander Stouw [30] reports the use of a
“special routine” to disambiguate the possible meanings of the token “hex”, with little
further explanation. These omissions are at least partly due to a lack of space in which
to present full details; to overcome this, we have deposited the source code for OPSIN
on sourceforge.net under an open-source license, along with the rest of OSCAR3.

Previously, we have worked on an ad-hoc approach to nomenclature parsing.
However, this ran into severe difficulties owing to ambiguity. Therefore, we are
currently pursuing a hybrid approach. Rather than using context-free grammars, we
chose to partially interpret the names using finite-state grammars, which are less
expressive but more tractable. A series of informal rules is then used to construct a
full interpretation, thus escaping the limitations of the finite-state parsing.

The input to the parser is a complete systematic name: the current parser cannot
detect and remove extraneous verbiage (e.g. glacial in glacial acetic acid) from its
input, nor does it request additional information if it is only given a partial name to
work with. There are a number of stages of processing – key ones are shown below.

The first step (not shown in Figure 3) breaks the chemical name into its constituent
words, by splitting on spaces, and assigns those words to particular roles. A set of
regular expressions are used to detect whether the compound is represented as a one-
word compound (eg. ethanol), an ester (ethyl acetate), an acid (ethanoic acid), a salt
(sodium acetate) or one of a number of other possibilities. Having done this, the
various words are labelled as being root-like (eg “ethanol”), substituent-like (eg
“ethyl”) or a simple token (“acid”).

 High-Throughput Identification of Chemistry in Life Science Texts 113

Fig. 3. Steps in the parsing of chemical names by OPSIN. Key to “finite-state parsing”: l =
locant group, m = multiplier, x = simple substituent, a = alkane name stem, n = “n-“ (indicating
a straight-chain alkane), h = hyphen, s = suffix, W = Hantzsch-Widman ring system.

The second stage (tokenisation) breaks the individual words into a list of multi-
character tokens. Tokens come from two sources – a set of lists of tokens, along with
data on what they mean, and a set of regular expressions.

In the third stage, finite-state parsing, roles are assigned to the various tokens –
some, such as “chloro”, are unambiguous. Others, such as “hex” and “ane”, could
have multiple roles – each of these are represented by a 1-letter symbolic code. The
first could act as a multiplier (as in hexachloro-, “m” in Figure 3) or to indicate six
carbon atoms in a row (as in hexane), whereas the latter could indicate an alkane
(hexane again, “a” in Figure 3) or a six-membered aliphatic ring (as in dioxane, “W”
in Figure 3). The various possibilities for each token in the word are tabulated, and a
finite automaton generated from a regular expression (representing the grammar of
chemical names) is used to select a valid path (if present) through the word. At this
stage, an essentially ‘flat’ parse is generated – further processing is needed to
construct a full parse tree.

The next stage is to group together the tokens into chunks, each representing the
“root group” of the compound, or a substituent. These chunks also include metadata
such as brackets and locants and multipliers.

Once the chunk structure of the name has been determined, an XML representation
of the name is constructed, with one XML element per token in the chemical name.

l m x a W h l W
 u s

1,3-dichloropropan-2-ol

1,3- di chloro prop an - 2- ol 1,3- di chloro propa n- 2- ol

l m x a n h W
 s

Tokenisation

Finite-state parsing

Chunking and XML generation

Postprocessing

Structure building

Cl

Cl
OH

Intermediate XML 1

Intermediate XML 2

ambiguity

no longer
ambiguous

114 P. Corbett and P. Murray-Rust

Note that at this stage the XML marks-up the name that OPSIN has been given –
removing the tags would result in the recovery of the original name.

A number of aspects of chemical grammar which do not fit into the finite-state
formalism are now processed. The effects of multipliers (di-, tri- etc.) are applied by
duplicating the groups that they refer to, locant groups (eg. 1,2-) are parsed into their
individual locants (1, 2) and matched with the elements that they apply to, and so on.
Also at this stage, OPSIN resolves the matter of which groups attach to which, by
looking at the bracketing. For example, in (2-chloroethyl)benzene the chloro- attaches
to the ethyl, whereas in 2-chloro-1-ethylbenzene the chloro- attaches to the benzene.

Next, the chemical structure is built, according to the information provided by the
XML. In each chunk, a group is specified and a connection table is built for that
group. The group is then modified, for example by adding –OH to it if the suffix –ol
is present, and attached to other groups that have been constructed. A validation step
then occurs, that sanity-checks the results of the parse, and rejects structures with
obvious problems, such as pentavalent carbon atoms.

Finally, the connection table that has been made is converted to CML, which is
returned to the application that called OPSIN.

At many stages, OPSIN encounters ambiguities where more than one interpretation
is possible. Where it is efficient to do this, all possible interpretations are considered
in the later stages of processing, in the hope that all but one of these will fail to
produce a structure. Cases where more than one structure is produced are treated as
parsing failures.

OPSIN has been tested against a set of machine-generated IUPAC names. The
entries for PubChem compounds with IDs from 1 to 10,000 were collected, and the
IUPAC names (designated by PUBCHEM_IUPAC_NAME in the .sdf files) were
harvested, along with the associated InChIs. This gave 8183 names (average length:
58 characters) with associated InChI pairs. The names were passed to OPSIN, and
where OPSIN produced a structure for the name, the structure was converted to an
InChI and compared against the published InChI. From the 8183 names, OPSIN
produced 4475 correct InChIs (54.7%), 162 incorrect InChIs (2.0%) and did not
produce a result for the remaining 3546 of the names (43.3%). This test run took
442.5 seconds – equal to 18 parse attempts per second.

There are a number of areas where OPSIN is currently lacking in functionality.
One of these is in the handling of “generic” nomenclature, where the chemical
structure is underspecified by the name – for example in “aminopyrazoles” where the
amino group attaches to the pyrazole is not specified. Often, these appear as plurals,
and are used to specify a class of chemical compounds. Currently, OPSIN will reject
plurals that are handed to it, but if they are re-cast as singulars by removing the
terminal ‘s’, OPSIN will attempt to parse them. Often, where these names differ from
fully-specified names in that locants are missing, the current OPSIN will assume that
“default” locants are meant – for example aminopyrazole is treated as 1-
aminopyrazole. It should be noted that to the best of our knowledge none of the other
parsers are able to produce underspecified structures from chemical names either.
Parsing these remains as one of our research objectives.

Features not currently implemented include the handling of tri- and higher poly-
cyclic nomenclature (eg. tricyclo[5.4.0.02,9]undecane), fused aromatic nomenclature

 High-Throughput Identification of Chemistry in Life Science Texts 115

(eg. thieno[3,2-b]furan – however fused systems with trivial names such as naphtha-
alene are included, as is the common system cyclopenta[a]phenanthrene, which is
included as a special case, as it has a special locant numbering for compatibility with
steroid nomenclature), and many forms of nomenclature specific to complex inorganic
chemicals and natural products. Another problem is that the bracketing that is used to
show which group attaches to which is frequently left out – for example, in 2-
chloroethylbenzene it is not trivial to determine whether the chloro group attaches to
the ethyl group or to the benzene. We are therefore looking into ways in which this
information can be inferred. Possible approaches involve looking for common
fragments of chemical names (eg. chloromethyl-, dimethylamino-), or by seeing which
interpretation requires the fewest assumptions later on (for example if the chloro group
above attaches directly to the benzene, the ethyl group has three inequivalent places
where it could attach. If the chloro group attaches via the ethyl group, the symmetry of
the benzene ring removes this problem).

3 Evaluation

An initial informal evaluation was carried out the 1100 PubMed abstracts in the
section of the BioIE[2] corpus dealing with cytochrome P450 biochemistry,
suggesting an average precision of around 75%. These took about 1300 seconds to
parse. After further development OSCAR3 was re-tested on unseen abstracts.

Batches of ca. 200 abstracts were fetched from PubMed using five different search
terms. “Smith” was used to get an essentially random collection of abstracts.
“Bacterial metabolism” was used to represent a fairly large field, “veterinary
toxicology” for a small one. “Porcine skin” and “grapefruit” were also selected for
their ability to give lots of interesting abstracts.

From them, abstracts containing five or more chemicals (or other entities to be
annotated by OSCAR3) were selected. For each batch, the following procedure was
followed: the abstracts were auto-annotated by OSCAR3, and a gold standard was
created by correcting the annotations by hand. Per-abstract precision and recall (“P1”,
“R1”) were calculated for the concepts annotated. Two annotations matched if they
were in the same place, the same length and had the same type (compound, group,
element etc.). Currently the name resolution is not advanced enough for formal
testing. A second, larger, batch of abstracts (ca 500 where available, not overlapping
with the first) was fetched using the same search term, and auto-annotated with
OSCAR3. The most commonly occurring compounds were then tabulated, and
exactly five minutes was spent adding mis-recognised words (eg. swine, prostate) as
stop-words, starting with the most common mistakes and working down the list in
sequence. The first batch was re-annotated with OSCAR3, and precision and recall
(“P2”, “R2”) were recalculated. The parser was then retrained, and precision and
recall (“P3”, “R3”) were recalculated again. Finally, exactly five minutes was spent
selecting various abbreviations that had been mis-recognised as formulae (eg. IC50,
P450, H5N1, CI), and final precision and recall (“P4”, “R4”) were calculated. This
procedure demonstrated that the second batch of abstracts could act as training data
for the first, without the need for laborious hand-annotation of the entire batch.

116 P. Corbett and P. Murray-Rust

Table 1. Results from evaluation of OSCAR3. P1 etc. as defined above.

Search term Smith Veterinary
Toxicology

Bacterial
Metabolism

Porcine Skin Grapefruit

Abstracts fetched 168 91 185 196 180
Abstracts selected 48 31 63 64 129
Abstracts in batch 2 432 147 483 483 234
P1 60.8% 67.5% 67.7% 72.1% 65.0%
R1 69.6% 74.0% 80.8% 69.7% 72.0%
P2 62.9% 70.5% 69.9% 74.0% 66.7%
R2 69.3% 74.0% 80.8% 69.8% 72.0%
P3 63.0% 71.4% 70.5% 73.7% 66.9%
R3 69.3% 74.0% 80.8% 69.2% 72.0%
P4 64.1% 74.3% 71.6% 75.3% 70.5%
R4 69.6% 74.0% 80.8% 69.1% 72.0%

From this work, it is clear that there are a number of areas in which OSCAR3
could be improved. Some changes should be trivial to implement – for example the
list of allowable chemical suffixes was missing a few key entries (-am, -fil, -id, -vir, -
oids) that were common in drug names. More training data would also help.

Other changes are not so straightforward. Acronyms and other abbreviations, for
example, are a real problem. The regex-based chemical formula recogniser mis-
classifies many of these as chemicals (some fortuitously do represent chemicals eg.
BP (benzopyrene), but most represent non-chemicals eg. HIV), and many
acronyms/abbreviations for chemical names are missed by the parser. Fortunately,
many of these acronyms are defined in the text of the abstract – in the SciBorg
framework, we see finding these and using them to handle acronyms appropriately as
being a task for word sense disambiguation (or anaphora/coreference resolution)
modules. Likewise, words like In, No and At are commonly mis-labelled as chemical
elements – these errors could be removed with the aid of a part-of-speech tagger.

Currently OSCAR3 uses a medium-size lookup for names, but we believe that
almost all common trivial and drug names are to be found in PubChem whose name,
synonym and connection table data are freely downloadable and could be configured
with OSCAR3.

References

1. de Matos, P., Ennis, M., Guedj, M., Degtyarenko, K., Apweiler, R. ChEBI – Chemical
Entities of Biological Interest, Nucleic Acids Res., Database Summary Paper 646.

2. http://bioie.ldc.upenn.edu
3. http://www.cl.cam.ac.uk/users/av308/Project_Index/index.html
4. http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
5. http://www-tsujii.is.s.u-tokyo.ac.jp/medie
6. http://www-tsujii.is.s.u-tokyo.ac.jp/info-pubmed
7. http://www.ihop-net.org/UniPub/iHOP/
8. http://www.textpresso.org/
9. http://www.ebi.ac.uk/Rebholz-srv/ebimed/index.jsp

10. http://pdg.cnb.uam.es/BioLINK/BioCreative.eval.html

 High-Throughput Identification of Chemistry in Life Science Texts 117

11. http://ir.ohsu.edu/genomics/
12. Vasserman, A.: Identifying Chemical Names in Biomedical Text: An Investigation of the

Substring Co-occurrence Based Approaches. Proceedings of the Student Research
Workshop at HLT-NAACL, 2004.

13. Wilbur, J. W., Hazard, G. F., Divita, G., Mork, J. G., Aronson, A. R., Browne, A. C.:
Analysis of Biomedical Text for Chemical Names: A Comparison of Three Methods. Proc
AMIA Symp 1999, 176-80.

14. Chowdhury, G. G., Lynch, M. F., Semantic Interpretation of the Texts of Chemical Patent
Abstracts. 1. Lexical Analysis and Categorization. Journal of Chemical Informatics and
Computer Science 32 (1992) 463-467.

15. Chowdhury, G. G., Lynch, M. F., Semantic Interpretation of the Texts of Chemical Patent
Abstracts. 2. Processing and Results. Journal of Chemical Informatics and Computer
Science 32 (1992) 468-473.

16. Al, C. S., Blower, P. E. Jr., Ledwith, R. H., Extraction of Chemical Reaction Information
from Primary Journal Text. Journal of Chemical Informatics and Computer Science 30
(1990), 163-169.

17. Zamora, E. M., Blower, P. E. Jr.: Extraction of Chemical Reaction Information from
Primary Journal Text Using Computational Linguistics Techniques. 1. Lexical and
Syntactic Phases. Journal of Chemical Informatics and Computer Science 24 (1984),
176-181.

18. Zamora, E. M., Blower, P. E. Jr.: Extraction of Chemical Reaction Information from
Primary Journal Text Using Computational Linguistics Techniques. 2. Semantic Phase.
Journal of Chemical Informatics and Computer Science 24 (1984), 181-188.

19. Postma, G. J., van der Linden, B., Smits, J. R., Kateman, G.: TICA: A System for the
Extraction of Data from Analytical Chemical Text. Chemometrics and Intellegent
Laboratory Systems, 9 (1990) 65-74.

20. Cooper, J. W., Boyer, S., Nevidomsky, A., Coden, A. R.: Automatic discovery and
annotation of organic chemical names in patents, 229th ACS National Meeting 2005.

21. Copestake, A., Corbett, P. T., Murray-Rust, P., Rupp, C. J., Siddharthan, A., Teufel, S.,
Waldron, B.: An Architecture for Language Technology for Processing Scientific Texts,
submitted for UK e-Science All Hands Meeting 2006.

22. http://sourceforge.net/projects/oscar3-chem.
23. Ludwig, M.-G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., Hofstetter,

H., Wolf, R. M., Seuwen, K.: Proton-sensing G-protein-coupled receptors, Nature 425
(2003), 93-98.

24. Murray-Rust, P., Mitchell, J. B. O., Rzepa, H. S.: Communication and re-use of chemical
information in bioscience, BMC Bioinformatics 6 (2005), 180.

25. Murray-Rust, P., Mitchell, J. B. O., Rzepa, H. S.: Chemistry in Bioinformatics, BMC
Bioinformatics 6 (2005), 141.

26. Townsend, J., Copestake, A., Murray-Rust, P., Teufel, S., Waudby, C., Language
Technology for Processing Chemistry Publications, in Proceedings of the fourth UK e-
Science All Hands Meeting, 2005.

27. Chen, S. F., Goodman, J.: An empirical study of smoothing techniques for language
modeling. Computer Speech and Language 13 (1999), 359-394.

28. Townsend, J. A., Adams, S. E., Waudby, C. A., de Souza, V. K., Goodman, J. M., Murray-
Rust, P.: Chemical documents: machine understanding and automated information
extraction, Organic & Biomolecular Chemistry 2 (2004), 3294.

118 P. Corbett and P. Murray-Rust

29. A Guide to IUPAC Nomenclature of Organic Chemistry, Recommendations 1993
(including Revisions, Published and hitherto Unpublished, to the 1979 Edition of
Nomenclature of Organic Chemistry), IUPAC (1993)

30. Vander Stouw, G. G., Naznitsky, I., Rush, J. E.: Procedures for Converting Systematic
Names of Organic Compounds into Atom-Bond Connection Tables. Journal of Chemical
Documentation 7 (1967) 165-169.

31. Vander Stouw, G. G., Elliott, P. M., Isenbert, A. C.: Automated Conversion of Chemical
Substance Names into Atom-Bond Connection Tables. Journal of Chemical
Documentation 14 (1974), 185-193.

32. Cooke-Fox, D. I., Kirby, G. H., Rayner, J. D.: Computer Translation of IUPAC Systematic
Organic Chemical Nomenclature. 1. Introduction and Background to a Grammar-Based
Approach, J. Chem. Inf. Comp. Sci. 29 (1989) 101.

33. Brecher, J.: Name=Struct: A Practical Approach to the Sorry State of Real-Life Chemical
Nomenclature, J. Chem. Inf. Comp. Sci. 39 (1999) 943.

	Introduction
	Chemical Language in Bioscience

	OSCAR3
	Chemical Names

	Evaluation
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

