Creational patterns
Abstract factory (recognizeable by creational methods returning the factory itself which in turn can be used to create another abstract/interface type)
· javax.xml.parsers.DocumentBuilderFactory#newInstance()
· javax.xml.transform.TransformerFactory#newInstance()
· javax.xml.xpath.XPathFactory#newInstance()
Builder (recognizeable by creational methods returning the instance itself)
· java.lang.StringBuilder#append() (unsynchronized)
· java.lang.StringBuffer#append() (synchronized)
· java.nio.ByteBuffer#put() (also on CharBuffer, ShortBuffer, IntBuffer, LongBuffer, FloatBuffer and DoubleBuffer)
· javax.swing.GroupLayout.Group#addComponent()
· All implementations of java.lang.Appendable
Factory method (recognizeable by creational methods returning an implementation of an abstract/interface type)
· java.util.Calendar#getInstance()
· java.util.ResourceBundle#getBundle()
· java.text.NumberFormat#getInstance()
· java.nio.charset.Charset#forName()
· java.net.URLStreamHandlerFactory#createURLStreamHandler(String) (Returns singleton object per protocol)
Prototype (recognizeable by creational methods returning a different instance of itself with the same properties)
· java.lang.Object#clone() (the class has to implement java.lang.Cloneable)
Singleton (recognizeable by creational methods returning the same instance (usually of itself) everytime)
· java.lang.Runtime#getRuntime()
· java.awt.Desktop#getDesktop()
· java.lang.System#getSecurityManager()
Structural patterns
Adapter (recognizeable by creational methods taking an instance of different abstract/interface type and returning an implementation of own/another abstract/interface type which decorates/overrides the given instance)
· java.util.Arrays#asList()
· java.io.InputStreamReader(InputStream) (returns a Reader)
· java.io.OutputStreamWriter(OutputStream) (returns a Writer)
· javax.xml.bind.annotation.adapters.XmlAdapter#marshal() and #unmarshal()
Bridge (recognizeable by creational methods taking an instance of different abstract/interface type and returning an implementation of own abstract/interface type which delegates/uses the given instance)
· None comes to mind yet. A fictive example would be new LinkedHashMap(LinkedHashSet<K>, List<V>) which returns an unmodifiable linked map which doesn't clone the items, but uses them. The java.util.Collections#newSetFromMap() and singletonXXX() methods however comes close.
Composite (recognizeable by behavioral methods taking an instance of same abstract/interface type into a tree structure)
· java.awt.Container#add(Component) (practically all over Swing thus)
· javax.faces.component.UIComponent#getChildren() (practically all over JSF UI thus)
Decorator (recognizeable by creational methods taking an instance of same abstract/interface type which adds additional behaviour)
· All subclasses of java.io.InputStream, OutputStream, Reader and Writer have a constructor taking an instance of same type.
· java.util.Collections, the checkedXXX(), synchronizedXXX() and unmodifiableXXX() methods.
· javax.servlet.http.HttpServletRequestWrapper and HttpServletResponseWrapper
Facade (recognizeable by behavioral methods which internally uses instances of different independent abstract/interface types)
· javax.faces.context.FacesContext, it internally uses among others the abstract/interface types LifeCycle, ViewHandler, NavigationHandler and many more without that the enduser has to worry about it (which are however overrideable by injection).
· javax.faces.context.ExternalContext, which internally uses ServletContext, HttpSession, HttpServletRequest, HttpServletResponse, etc.
Flyweight (recognizeable by creational methods returning a cached instance, a bit the "multiton" idea)
· java.lang.Integer#valueOf(int) (also on Boolean, Byte, Character, Short and Long)
Proxy (recognizeable by creational methods which returns an implementation of given abstract/interface type which in turn delegates/uses a different implementation of given abstract/interface type)
· java.lang.reflect.Proxy
· java.rmi.*, the whole API actually.
Behavioral patterns
Chain of responsibility (recognizeable by behavioral methods which (indirectly) invokes the same method in another implementation of same abstract/interface type in a queue)
· java.util.logging.Logger#log()
· javax.servlet.Filter#doFilter()
Command (recognizeable by behavioral methods in an abstract/interface type which invokes a method in an implementation of a different abstract/interface type which has been encapsulated by the command implementation during its creation)
· All implementations of java.lang.Runnable
· All implementations of javax.swing.Action
Interpreter (recognizeable by behavioral methods returning a structurally different instance/type of the given instance/type; note that parsing/formatting is not part of the pattern, determining the pattern and how to apply it is)
· java.util.Pattern
· java.text.Normalizer
· All subclasses of java.text.Format
· All subclasses of javax.el.ELResolver
Iterator (recognizeable by behavioral methods sequentially returning instances of a different type from a queue)
· All implementations of java.util.Iterator (thus among others also java.util.Scanner!).
· All implementations of java.util.Enumeration
Mediator (recognizeable by behavioral methods taking an instance of different abstract/interface type (usually using the command pattern) which delegates/uses the given instance)
· java.util.Timer (all scheduleXXX() methods)
· java.util.concurrent.Executor#execute()
· java.util.concurrent.ExecutorService (the invokeXXX() and submit() methods)
· java.util.concurrent.ScheduledExecutorService (all scheduleXXX() methods)
· java.lang.reflect.Method#invoke()
Memento (recognizeable by behavioral methods which internally changes the state of the whole instance)
· java.util.Date (the setter methods do that, Date is internally represented by a long value)
· All implementations of java.io.Serializable
· All implementations of javax.faces.component.StateHolder
Observer (or Publish/Subscribe) (recognizeable by behavioral methods which invokes a method on an instance of another abstract/interface type, depending on own state)
· java.util.Observer/java.util.Observable (rarely used in real world though)
· All implementations of java.util.EventListener (practically all over Swing thus)
· javax.servlet.http.HttpSessionBindingListener
· javax.servlet.http.HttpSessionAttributeListener
· javax.faces.event.PhaseListener
State (recognizeable by behavioral methods which changes its behaviour depending on the instance's state which can be controlled externally)
· javax.faces.lifecycle.LifeCycle#execute() (controlled by FacesServlet, the behaviour is dependent on current phase (state) of JSF lifecycle)
Strategy (recognizeable by behavioral methods in an abstract/interface type which invokes a method in an implementation of a different abstract/interface type which has been passed-in as method argument into the strategy implementation)
· java.util.Comparator#compare(), executed by among others Collections#sort().
· javax.servlet.http.HttpServlet, the service() and all doXXX() methods take HttpServletRequest and HttpServletResponse and the implementor has to process them (and not to get hold of them as instance variables!).
· javax.servlet.Filter#doFilter()
Template method (recognizeable by behavioral methods which already have a "default" behaviour definied by an abstract type)
· All non-abstract methods of java.io.InputStream, java.io.OutputStream, java.io.Reader and java.io.Writer.
· All non-abstract methods of java.util.AbstractList, java.util.AbstractSet and java.util.AbstractMap.
· javax.servlet.http.HttpServlet, all the doXXX() methods by default sends a HTTP 405 "Method Not Allowed" error to the response. You're free to implement none or any of them.
[bookmark: _GoBack]Visitor (recognizeable by two different abstract/interface types which has methods definied which takes each the other abstract/interface type; the one actually calls the method of the other and the other executes the desired strategy on it)
· javax.lang.model.element.AnnotationValue and AnnotationValueVisitor
· javax.lang.model.element.Element and ElementVisitor
· javax.lang.model.type.TypeMirror and TypeVisitor
· java.nio.file.Files#walkFileTree() and FileVisitor
