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Abstract. Biomedical literature is an important source of information for
chemical compounds. However, different representations and nomenclatures for
chemical entities exist, which makes the reference of chemical entities ambigu-
ous. Many systems already exist for gene and protein entity recognition, how-
ever very few exist for chemical entities. The main reason for this is the lack of
corpus to train named entity recognition systems and perform evaluation.

In this paper we present a chemical entity recognizer that uses a machine
learning approach based on conditional random fields (CRF) and compare
the performance with dictionary-based approaches using several termino-
logical resources. For the training and evaluation, a gold standard of manu-
ally curated patent documents was used. While the dictionary-based systems
perform well in partial identification of chemical entities, the machine learn-
ing approach performs better (10% increase in F-score in comparison to the
best dictionary-based system) when identifying complete entities.

Keywords: Chemical Named Entity Recognition, Conditional Random
Fields, Text Mining.

1 Introduction

Every year life sciences produce a huge amount of new publications, including patent
registration documents. The tasks of document categorization, recognizing entities
and related information, is becoming increasingly important in the daily research and
work life of scientists, but it is a challenge. The performance of state of the art text
mining tools that recognize gene and proteins is still far from achieving the levels of
performance achieved by text mining tools applied to other areas such as news text [1,
2, 3]. For gene and protein entity recognition, some competitions such as the Bio-
CreAtIvE [4] provide an evaluation of state-of-the-art systems for text mining pub-
licly available data sources. Two main approaches are being used by those systems:
dictionary-based and dictionary-independent approaches.

Dictionary-based approaches allow a direct mapping of the recognized entities to
reference objects (i.e. identifiers for public databases). However this approach has the
drawback of being dependent on the completeness and quality of the dictionary and
the methods to resolve the high ambiguity and spelling variants inherent to biomedi-
cal entities. The other approach is dictionary-independent, and includes rule-based as
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well as case-based systems. This approach is better suited to find named entities when
no comprehensive dictionary is available.

Machine-learning approaches are based on an annotated training set from which
statistical information can be obtained about the inherent dependencies in the data.
This extracted information is used to create a probabilistic model that can be applied
on unseen data to perform the named entity recognition task. The main bottleneck of
this approach is the selection and creation of a training set large enough to enable the
creation of a model sufficiently accurate. In the BioCreAtIvE sub-task of gene
mention recognition, the best approaches achieved an F-measure of 86% [5].

However, gene and protein mentions are not the only important entities in the bio-
medical field. Other chemical substances [6] such as drugs, metabolites, nutrients,
enzyme cofactors and experimental reagents are also relevant. The annotation of
chemical entities enables a number of applications, such as the creation of semanti-
cally enhanced articles, with benefits for the readers. The entities found can be linked
to their properties, reactions and applications, and co-occurrence with other entities
can reveal new relations between chemical data and other bioinformatics data.

We present a chemical entity recognition system capable of finding a wide variety
of chemical molecules, classes of chemicals, ligands and chemical formulas of bio-
logical interest. A corpus of patent documents was used for the evaluation. Diction-
ary-based approaches were used to have a baseline evaluation and compared to a
machine-learning approach using CRFs.

2 Related Work

Recently, some chemical named entity systems were developed that we describe as
follows: ProMiner [7], a dictionary-based system that uses DrugBank for recognition
of drug names in MEDLINE; EBIMed uses the drug dictionary from MedlinePlus as
source [8]; Narayanaswamy et al [9] describes a system based on a manually devel-
oped set of rules that rely heavily upon some crucial lexical information, linguistic
constraints of English, and contextual information; Kemp and Lynch [10] proposes a
system that identifies chemical names in patent texts with handcrafted rules using
dictionaries with chemical name fragments; OSCAR3 [11] relies on an internal lexicon
of chemical names and structures initially populated using ChEBI [12]. OSCAR3's
performance was evaluated on different corpora with F-score rates between 60-80%.
This open source program is one of the few available to the academic community
[13]. Klinger et al [14] presents a machine-learning approach based on conditional
random fields (CRF), and a performance of 80-85% F-score. However this system
is an IUPAC-like [15] named entity recognition system only, and it is usual for a
chemical to be referenced by the trivial name or other synonyms.

There are few annotated corpus available to evaluate (and train if needed) chemical
named entity recognition systems. The GENIA corpus [16] includes some chemical
annotations; however it is a generic corpus for molecular biology and includes many
entities besides chemicals. Only a few MEDLINE abstracts in that corpus are recog-
nizable as chemistry abstracts. Thus, the lack of proper corpus leads the authors of
most systems to generate their own.
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3 Method

3.1 Corpus

A joint team of curators from the ChEBI (Chemical Entities of Biological Interest)
and EPO (European Patent Office) have manually annotated a corpus of 40 patent
documents (this annotated corpus will be our gold standard). Those documents were
selected to be a representative set of the universe of chemical patent documents.
EPO is interested in providing such a corpus so that improvements can be made in
information retrieval systems applied to the existing documents.

ChEBI is a freely available dictionary of small molecular entities such as any con-
stitutionally or isotopically distinct atom, molecule, ion, radical, etc. In addition to
molecular entities, ChEBI contains groups (parts of molecular entities) and classes
of entities, enabling ChEBI to be organized as a chemical ontology, structuring
molecular entities into subsumption classes and defining the relations between them.

Patent documents describe inventions that are required to be new, involve an in-
ventive step, and are susceptible of industrial application. Because of its innovative
nature, patent documents have the potential to be a good source of new chemical
entities that can be used to extend the ChEBI ontology.

The corpus of 40 documents contains 4985 sentences and 182258 words. The
number of entities annotated in the gold standard was of 11162, which gives an
average 280 entities per document.

3.2 Dictionary-Based Approach

The approach followed was a direct search in the documents for the entities present in
each of the dictionaries used. This simple approach is easy to implement and can
be used as a baseline to have preliminary results and to understand how existing
dictionaries cover the entities present in the gold standard.

Three different dictionaries were used as resource: ChEBI, DrugBank and Oscar3.

ChEBI contains approximately 15000 entries, and 40000 synonyms. This number
shows the problem of multiple names for one entity (polysemy). For example, adrena-
line and epinephrine refer to the same chemical entity. Chemical names, particularly
common names, may contain ambiguity as to the exact chemical which is intended by
the use of the name. For example the term adrenaline may refer to either one of the
enantiomers (S)-adrenaline and (R)-adrenaline. This accounts for the complexity of
identifying chemical entity mentions in text.

DrugBank combines detailed drug (i.e. chemical, pharmacological and pharmaceu-
tical) data with comprehensive drug target (i.e. sequence, structure, and pathway)
information. The database contains nearly 4800 drug entries [17].

OSCAR3 keeps an internal lexicon of chemical names and structures that have been
initially populated using ChEBI, and further extended. This lexicon was also used as a
dictionary resource [18].

3.3 Machine-Learning Approach

Conditional random fields (CRF) were used for building probabilistic models
to automatically annotate the corpus [19]. CRFs are a probabilistic framework for
labeling and segmenting structured data, such as sequences, trees and lattices. In the
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context of named entity recognition they can be used to label a sequence of tokens,
each token being represented as a set of features

The primary advantage of CRFs over hidden Markov models (HMM) is their con-
ditional nature, resulting in the relaxation of the independence assumptions required
by HMMs in order to ensure tractable inference. Additionally, CRFs avoid the label
bias problem, a weakness exhibited by maximum entropy Markov models (MEMMs)
and other conditional Markov models based on directed graphical models.

The gold standard was tokenized using a general tokenizer, and the sequence of to-
kens used by MALLET [20], a Java-based package for statistical natural language
processing, document classification, clustering, topic modeling, information
extraction, and other machine learning applications to text, which includes an
implementation of CRFs.

The corpus was divided in a training-set and a testing-set. From the 40 documents,
20 were randomly selected for training, and the remaining used for testing.

To select an adequate set of features, several models were created using different
sets of features. Tested features include the token, the stem of the token, lowercased
versions of the token and stem, prefix and suffix of the token and indication if the
token is a number. For example, for the piece of sentence “...cosmetic compositions
containing colostrum, tocopherols, zinc oxide and hyaluronic acid...” (the chemical
entities present are underlined) the list of tokens obtained by the tokenizer and some
possible features are shown in Table 1. The CRF implementation uses a sequence of
sets of such features, plus a label (for the documents in the training set) for the train-
ing step. The resulting model can then be used to predict the label of another sequence
of features (the testing-set).

With this approach a token can be classified as being part of a chemical entity, or
not. In this way it is impossible to identify the boundaries of an entity, and the results
are not comparable to the ones given for dictionary-based approaches.

3.4 Evaluation

For evaluation of the dictionary-based systems, the corpus was automatically anno-
tated using the different resources. The obtained annotations were then compared with
the ones of the gold standard.

Table 1. Example of a sequence of features, and the corresponding label

Token Stem Prefix  Suffix Label
cosmetic cosmet cos tic Not Chemical
compositions composit com ons Not Chemical
containing contain con ing Not Chemical
colostrum colostrum  col rum Not Chemical
tocopherols tocopherol  toc ols Chemical
zinc zinc zin inc Chemical
oxide oxid oxi ide Chemical

and and and and Not Chemical
hyaluronic hyaluron hya nic Chemical

acid acid aci cid Chemical
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Many entities are composed by more than one token (for example the entity
“hyaluronic acid”), so we make the distinction between partial and a complete match.

When the complete entity is correctly identified by the automatic annotation sys-
tem, we consider having a complete match (in the example given before, “hyaluronic
acid” had to be annotated to be considered a complete match). When only part of an
entity is identified (for example “acid” in the example given) we have a partial match.
When nothing of an entity is annotated we have a missed annotation, and when a
piece of unannotated text in the gold standard is annotated by the system we have an
annotation error. We can than obtain precision, recall and F-score measures.

To evaluate the machine-learning approach based on CRF we need a way to meas-
ure the complete match results. To be able to do so we changed the number of labels
from two (“Not Chemical” and “Chemical”) to five (“Not Chemical”, “Single”,
“Start”, “End” and “Middle”). This way a token can still be labeled “Not Chemical”,
but the label “Chemical” was split into four new labels. “Single” identifies a token
that is itself a chemical entity (single token entities). For the multi token entities, the
first token is labeled as “Start”, and the last one to as “End”. For entities composed by
more than two tokens, the remaining tokens are labeled as “Middle”. This increase in
the number of classes can put an overhead in the system, slightly decreasing the
performance, but is necessary to allow boundary detection.

4 Results

Dictionary-Based Approach. From Table 2 we can see that for the dictionary-based
approach the highest F-score (88%) was achieved using OSCAR as resource, immedi-
ately followed by ChEBI with only 3% less. Recall is extremely low for DrugBank,
which can be explained by the specificity of this resource (only contains drug names).
The resource with higher recall is OSCAR, which leads us to conclude that the internal
lexicon of OSCAR3 is the most extensive of the three. Precision is higher than 80% for
any of the resources used. For complete match we have a different scenario, the high-
est F-score is achieved using ChEBI (37%) followed by OSCAR (27%). These results
show that the dictionary-based systems can identify where a chemical entity is, but
fail to completely identify it, having only a partial match on the entity.

The better results achieved when using ChEBI as a resource were not expected
given that the lexicon of OSCAR3 is more extensive. However the gold standard was
annotated by ChEBI curators which may explain why this resource performs better in
the context of this corpus.

The complete identification of an entity is however important, and improvements
in the complete match results are highly desirable.

Machine-Learning Approach. The results of annotating the testing set with models
using different sets of features, for selection, are presented in Table 3. The best results
were obtained by using a feature set composed by the stem of the token, the prefix,
the suffix, and the indication if the token is a number or not. This will be the feature
set used in the following experiments.
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Table 2. Evaluation results for partial and complete match using dictionary-based approach

R Partial Match Complete Match
esources

Precision Recall F-Score Precision Recall F-Score
ChEBI 80,9 91,2 85,7 359 38,7 37,2
DrugBank 80,1 28,1 41,6 55,8 6,02 10,9
OSCAR 81,7 96,5 88,5 21,6 37,5 27,4

Table 3. Effect of using different feature sets in CRFs. (Ic indicates that uppercase characters
were set to lowercase)

Feature Set Precision Recall F-Score
Ic_token 82,2 51,1 63,1
Ic_stem 82,9 52,8 64,5
prefix suffix 80,9 63,7 71,3
lc_stem prefix suffix 82,5 63,2 71,6
stem prefix suffix 85,0 61,5 72,5
stem prefix suffix digit 83,0 64,6 72,7

Table 4. Evaluation results for complete match using condition random field. Results using
ChEBI dictionary are shown for comparison

Approach Precision Recall F-Score
ChEBI resource 35,9 38,7 37,2
50/50 split 62,4 43,6 51,3
CREF crossvalidation 58,5 39,5 47,2

The results obtained for complete match using a random split of 20 documents as
training-set, and the remaining documents as testing-set (50/50 split) are given in Table 4.

To have results over the complete corpus we used cross-validation. Each one of the
40 documents was classified using a model constructed using the remaining 39 docu-
ments as a training-set. Cross-validation is more robust than simple random 50/50
split, and the results obtained this way for complete match in the identification of the
chemical entities in the complete corpus are shown in Table 4.

5 Discussion

Dictionary-based approaches perform well in the task of identifying at least part of a
chemical entity, having F-scores of 88% using OSCAR3. However many entities are
composed by more than one token and in this case the complete identification of the
entities lowers their effectiveness. The performance decreases considerably to a best
F-score of 37% using the ChEBI resource. Using OSCAR3 the obtained F-score is 27%.

A machine learning-approach using an implementation of conditional random
fields was developed. In feature selection and evaluation we conclude that a feature
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set composed by the stem, prefix, suffix and the information if the token is a number
or not is the best feature set we tested. However many improvements can be accom-
plished here. The tokenizer that we used is a generic one, and splits many chemical
entities into two or more tokens when this could be avoided. This happens because the
tokenizer splits text separated by a hyphen into different tokens. An improved token-
izer, designed specifically for chemical entity tokenization can thus improve the se-
quence of features sets, and the overall results. Also the features prefix and suffix are
the first and last three characters of the token, respectively. Improvements can be
made to provide better prefixes and suffixes, and thus improve the feature set for
better performance of the machine-learning approach.

Despite these bottlenecks, the machine-learning approach outperforms the diction-
ary-based ones. The machine learning method improves the F-score by 10% in relation
to the results using the best dictionary resource. Besides the better performance, the
machine-learning method has other advantages: It can identify novel chemical entities
in documents, which in turn can be used to extend dictionaries. A dictionary-based
approach can only identify molecules already present in the resource.

6 Conclusion

We have presented a chemical entity recognizer that uses a machine learning ap-
proach based on CRFs and compared its performance with dictionary-based
approaches using several terminological resources.

The dictionary-based systems performed well in partial identification of chemical enti-
ties, while the machine learning approach performed better (10% increase in F-score in
comparison to the best dictionary-based system) when identifying complete entities.

In the future it would be interesting to map the identified chemical entities to the
ChEBI database. This way a user that is looking at a patent document can view in-
formation related to a chemical molecule present in the text. Also when no mapping
can be made, we have an indication of a potentially novel chemical entity.

It would be also interesting to apply the model learned from the gold standard to
other corpus, such as MEDLINE abstracts, to determine if the system can be used as
an all-purpose chemical entity recognizer.
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